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Abstract.

A spectral analysis and normal mode expansions are developed for

the acoustic propagator

Au - -c2 (y) p(y) V * (p-(y) Vu)

of a stratified fluid with sound speed c(y) and density p(y) at depth y.

For an infinite fluid it is assumed that the (in general discontinuous)

functions c(y), P(y) are uniformly positive and bounded and satisfy

+- Ic(y) - c(-+o)j dy < , Ip(y) - p(±oo)I dy < .

0 0

Semi-infinite and finite fluid layers are also treated. The work

provides a basis for the analysis of transient and steady-state sound

fields in such fluids.
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§1. Introduction.

This paper presents a spectral analysis of the acoustic fields

in stationary plane stratified fluids whose densities and sound speeds

are functions of the depth. The analysis is based on families of normal

mode fields that have simple physical interpretations.

The acoustic field in such a fluid may be described by an acous-

tic potential or by the excess pressure. Each of these is a real valued

function u(t,x,y) that satisfies the wave equation [4, 13]

ai) - c2 (y) (y) V (p-1(y) VU) a 0

where t is a time coordinate, x = (x1,x2) are rectangular coordinates in

a horizontal plane, y is a vertical depth coordinate and

V - (0/ax1 ,a/ax2,a/ay). c(y) and p(y) are the variable sound speed and

density, respectively, and p- (y) l 1/p(y).

The paper presents a spectral analysis of the acoustic propagator

(1.2) Au - -c2 (y) p(y) V * (p-1 (y) Vu)

for the cases of an unlimited fluid ((x1,x2,y) 6 R 
) , a semi-infinite

layer ((x1 ,x2) 6 R
2, 0 < y < -) and a finite layer ((x1 ,x2) E R

2 ,

0 < y < h). Only the first case is presented in detail. The modifica-

tions required in the second and third cases are described in §9 at the

end of the paper.

4_ In the case of an unlimited fluid p(y) and c(y) will be assumed

to be Lebesgue measurable functions that satisfy

• 1
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(1.3) 0 < p< p(y) < M < , 0 < cm < c(y) < CH< 

for all y E R, and

(1.4) 4- JP(y) - p(-+o)I dy < 40 - c(y) - c(-+o)t dy <

where pm , PH' cm. cM, P(±-) and c(±-) are constants. It is clear that

(1.3), (1.4) imply

(1.5) m P(- ) < PM, cm < c((± ) < cM.

The spectral analysis of A will be based on the observation that

it is formally selfadjoint with respect to the scalar product defined by

(1.6) (uv) - f u(x,y) v(x,y) c- 2 (y) p (y) dxdy

where u is the complex conjugate of u. This suggests the introduction

of the Hilbert space

(1.7) 3C a L2 (R3,c-
2 (y) P-1 (y) dxdy)

with scalar product (1.6). Note that (1.3) implies that X is equivalent

as a normed space to the usual Lebesgue space L2 (R3 ) , although they are

distinct as Hilbert spaces.

A selfadjoint realization of A in C is obtained by defining the

domain of A in 3C to be

(1.8) D(A) - L.(R 3 ) () {u I V . (p 1 (y) Vu) 6 L2(R 3 ))

4where
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(1.9) L(R 3 ) - L 2(R) n {u I Vu 6 L2(R3))

is the usual first Sobolev space [1]. All the differential operations

in (1.8), (1.9) are to be understood in the sense of the theory of

distributions. The linear operator in X defined by (1.2), (1.8)

satisfies

(1.10) A-A *> 0

where A is the adjoint of A with respect to the scalar product (1.6).

A proof of (1.10) may be given by the method employed in [17].

Alternatively, (1.10) may be verified by showing that A is the operator

in K associated with the sesquilinear form A in K defined by

(1.11) D(A) = L'(R 3) C I

and

(1.12) A(u,v) - 3 Vu • Vv p-1 (y) dxdy;

*1
see [8, p. 322].

The principal result of this report is a construction of the

spectral family of A by means of a normal mode expansion. The spectrum

of A is continuous and contains no imbedded eigenvalues. This fact,

which is verified below, implies that the normal mode functions of A

must be generalized eigenfunctions; that is, solutions -p of the

differential equation

(1.13) -c2(y) p(y) 7 * (p-(y) Vq(x,y)) _ X(x,y)
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that are not in X. Solution of (1.13) by separation of variables leads

to solutions of the form

(1.14) I(x,y) - eip (y) p'= (p1,p2) E R
2,

where p • x - pIx 1 + P2X2 and 4(y) is a solution of the equation

(115 - 2(.y) P (Y 4-P Y = p,*

with 7p1- p -+ 2

The operator A defined by

S(1.16) Al _b " C2(y) (y) "4- P
-  

( )

P EP dyL dy 1

will be called the reduced acoustic propagator. For every v > 0, A has

a selfadjoint realization in the Hilbert space

(1.17) X(R) - L2 (R,c-2 (y) P-1(y) dy).

The domain of A is the set

(1.18) D(A) L L4(R) n {i PI -'(y) AP3 e L2

The properties

(1.19) A - A > c2 P 2

can be verified by showing that A is the operator in K(R) associated

with the sesquilinear form A in X(R) defined by
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(1.20) D(A) - L(R) C (R)

(1.21) fp b fd 41d~ + 112 P_ t -(y) dy.
R(R

The spectral analysis of A will be derived from that of A . The

main steps of the analysis are the following. First, hypotheses (1.3)

and (1.4) are used to construct solutions of A X =4 that have

prescribed asymptotic behaviors for y * -+o. Second, these solutions are

used to construct an eigenfunction expansion for A . The construction is

based on the Weyl-Kodaira theory of singular Sturm-Liouville operators.

Finally, the expansion for A and Fourier analysis in the variables xi,

x 2 are used to construct a spectral representation for A. This method

has been applied to the special cases of the Pekeris and Epstein profiles

[5, 17] where explicit representations of the solutions of A = AO by

means of elementary functions are available. Thus the main technical

advance in the present work is the construction, for the class of

density and sound speed profiles defined by (1.3) and (1.4) of solutions

of A $ - AO that have prescribed asymptotic behaviors for y - _t- and

sufficient regularity in the parameters X and p to permit application of

the methods of [5, 17].

The remainder of the introduction contains a description of the

eigenfunctions and generalized eigenfunctions of A., the corresponding

normal mode functions for A and their physical interpretations.

The limiting form for y ± of the equation A X 0 X$ is the

equation
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+.~A (XC- 2 (±o) - J2)

(1.22) dy2

whose general solution when X 0 C 2 (t_)11
2 can be written

(1.23)f c1 ~±IA)+ceo

+ C2 +(iA~

where I~~~~ 1/~X -(Z-Ac(~) 2 > 0

(1.24) for X < 2±)j

and

(1.25) {=- /for X > c2(o) 2

In particular, the solutions are oscillatory when X > c (±ao)p.1 and

non-oscillatory when X < c 2 (±_a)U 2. The first step in the analysis of A

will be to construct special solutions of A X0A4 that have the

asymptotic forms

0 1 Cy,p,X) =e4(1IX)y [1 + o(l)], y X0C()2

(1.26)J

03uAPI) e *qL(j,)y [1 + o(l)], A X#C 2(_G)II2.
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It follows from an asymptotic calculation of the Wronskians that and

02 are a solution basis for A 0 -  when X 0 c 2 (o)p 2 , while 4'3 and 0

are a basis when X # c2 (oo)p 2 .

The nature of the spectrum and eigenfunctions of A can be

inferred from (1.26). It will be assumed for definiteness that

(1.27) c (CO) < c (-c).

It follows that if X < c2 (_o)42 then A = 0 has bounded solutions only

if 02 and 03 are linearly dependent. Thus

(1.28) F(u,A) = P- I W( 2,q3) f 0

is an equation for the eigenvalues of A, where W denotes the Wronskian

and p- W is independent of y. The corresponding solutions

(1.29) 'k~y,) ak(P) #2(y,,Ak()) = a (p) €,(y,IAk(l)),

where X = Ak() is a root of (1.28), are square integrable on R and hence

are eigenfunctions of A . Moreover, A can have no point eigenvalues

X > c 2 (o)2 2 , by (1.26). Thus a0o (A1 ), the point spectrum of A , lies in

the interval [Cm12
2 ,c 2 (x)I 2 J. Criteria for ao(A ) to be empty, finite or

countably infinite are given in §3.

It will be shown that the continuous spectrum of A is

[c 2 (o_)p 2 ,-) and corresponding generalized eigenfunctions will be deter-

mined from (1.26). For c2 (o)p2 < X < c 2 (-_)1 2 there is a single family

of generalized eigenfunctions of the form

(1.30) p0(y,p,A) - a0 (u,X) p(y,iA).
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For X > c2 (- ) 2 there are two families defined by

I +(Y X = a+(p,X) 4(y, IX)

(1.31)

_ a_(p,X) 4,(y,P,X)

It will be shown that these functions have the following asymptotic

forms.

k( ) eq (X() )y ,

(1.32) k(y, ) -() q ( ,k())y{ k(.) e , y -o

,I iq+(I',X)y + R(p',X) eiq+('X)Y y +0o

(1 .34 ) i+ (y , , ) - c+ (Ii, )

TZ(p,X) e i q + (
,

' X) y  y +00

(1.35) _(y,p,X) c_(pX)

eiq- ( p ',)y + R_(p,A) e - iq - ( I1 ' X)y, y _.

Here ak a (), a0(p,X), a+(p,X), ck(p), c0 (p,X), c+(p,X), R0 (P,),

R+(Ii,X), T0 (p,X) and T+(Ij,X) are functions of 4 and X that will be

calculated below.

Families of normal mode functions for A may be constructed from

those for Aip, by the rule (1.14). The following notation will be used.
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(1.36) ip,(x,y,p,)X) (27r)~ elP p(j,) (p,X) E

(1.38) (xyp) (27r) 1l eLP ip E k x1

The parameter domains Q, 00 Q are defined by

(1.40) go {(p,X) E R' C2(_o) Jp1 2 < A< C2 (.o0) 1pJ2}

(1.41) Slk {p E R2  'P rI k', k > 1,

where Ok is the set of Pi > 0 for which A 11 has a kth eigenvalue; see §6.

The three families have different wave-theoretic interpretations

that are characterized by their asymptotic behaviors. Thus for

* (pA) ~ one has

i~-- + R iPxq

[ iippcxqqy)), y *+0

c+(IpI, A)
(1.43) 0p(x,y,p,A)

27r ei(px+q-.y) + R_ ei(p-x-qy) , y )*-0

where q+ - q±(IPIA), R+ - R+(IpI,X), etc. Hence +(x,y,p,X) behaves

for Y -1 400 like an incident plane wave with propagation vector
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k i . (p,-q+.) plus a specularly reflected wave with propagation vector

r - (p,q+), while for y * -= it behaves like a pure transmitted plane~r
waewith prpgtinvctrk (p,-q_) The incident and transmittedwave wihpropagation vector (p,-

plane waves can be shown to satisfy Snell's law n(-) sin 8(0)

n(-) sin 8(-) where 8(-) and 6(_-) are the angles between the y-axis

and and it. respectively, and n(±-) - c-1 (-+0). _(x,y,p,A) has a

similar interpretation. r

For (p,A) E 20 one has

i(px-q + R0  i(p*x+q+y) Y ,
c0(IPI,))

(1.44) 0(x,y,p,X) 
- 0

2w pqip'x
Te e- , y+- 0 .

Hence for y - , +o i(x,y,p,A) behaves like an incident plane wave plus a

specularly reflected wave while for y - - it is exponentially damped.

This is analogous to the phenomenon of total reflection of a plane wave

in a homogeneous medium of refractive index n(-) = c-(0) at an inter-

face with a medium of index n(--) - c-1 (-e) < n(-). Indeed, the

condition X < c2 (--) Ip12 is equivalent to the condition for total

reflection: n(-) sin O(M) > n(-).

For p E Qk' k > 1, one has

c~( )e ip 'x e qsY, y *=

27
(1.45) 

lpk(xyp) ~
ck ([l t~ q~y y

27

Hence the functions tPk(xyp) can be interpreted as guided waves that are

trapped by total reflection in the acoustic duct where c(y) < c(±-).

d

IL~A.
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They propagate in the direction - (p,O) parallel to the duct and

decrease exponentially with distance from it.

The coefficients R+, R0 and T+, T, in (1.42), (1.43), (1.44) may

be interpreted as reflection and transmission coefficients, respectively,

for the scattering of plane waves by the stratified fluid. They will be

shown to satisfy the conservation laws

(1.46) q+ IR+12 + q; IT,_1 2 - q+, 1R01 - 1.

The completeness of the set {l+,_,,, ..} of normal mode functions

is proved in §8 below.

The three families P+, and %0 represent, collectively, the

response of the stratified fluid to incident plane waves exp {i(p.x-qy)},

(p,q) C R3. To see this consider the mappings

(p,q) - X+(p,X) - (p,q+(IpIA)), (pA) E S1,

(1.47) (p,q) - X0 (p,X) - (p,q+(IpIA)), (P,X) E Qo,

(pq) = X_(pX) = (p,-q_(Ipl,X)), (p,X) r Q.

X+ is an analytic transformation of 02 onto the cone

(1.48) C+- {(p,q) I q > a Ip[}

where

(1.49) a - ((c(-_)/c(_))2 - 1)1/2 > 0.

Similarly, X0 is an analytic transformation of n. onto the cone

4 (1.50) CO - {(p,q) 1 0 < q < a jpj}
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and X is an analytic transformation of Q onto the cone

(1.51) C {(pq) q < 0}.

Thus, the asymptotic forms of _ and for y - ±- show that +(x,y,p,X)

with (p,X) E Q2 is the response of the fluid to a plane wave

exp {i(p'x - qy)} with (p,q) E C+, 4o(x,y,p,X) is the response to a plane

wave with (p,q) E Co and *_(x,y,p,X) is the response to a plane wave

with (p,q) E C. Note that

(1.52) RI C+ U Co U C U N

where N is a Lebesgue null set.

The interpretation of +, _ and '0 given above suggests the

introduction of a composite eigenfunction

(1.53) 4+(x,y,p,q) - (2w)-' eip x  +(YPq), (pq) 6 C+ u C. U C_,

where

(2q)11 2 c(_) P+(y, IpI,), (pA) - X+1 (p,q), (p,q)E C+ ,

(1.54) 0+(y,p,q) ( (2q)112c(_o) o(y,'jpI,X), (p,X) - x;o(p,q), (p,q)ECo,

(21qI) 1/ c-) ) 12_(y, Ip), (p,) - X1 (p,q),

(p,q),E C_.

The normalizing factors (2q) 11 2 c(w) and (21ql) 1/ 2 c(-) are the square roots

of the Jacobians of X, x-, and X-_! The function 0 (xy,p,q) is a

solution of the differential equation

(1.55) A 4 (,p,q) - X(p,q) 0+(*,p,q)

where

it
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c 2 (o)([p12 + q2), (p,q) E C U Co ,

(1.56) ),(p,q) 2 (-)(IP12 + q2), (p,q) e C

Its asymptotic behavior is described by

ei (p x-qy) + R+ ei(p x+ qy ) , (p,q) C+,

(1.57) +(x~y,p,q) - c(p,q) ei p x-qy) + R0 e
i(p x qy), (p,q) E C

T ei(p- x + q + (I p l X)y) , (p,q) E C_,

for y +4 and

Te i ~ ' - - l l )  (p,q) E C+,

T+

(1.58) 0+(x,y,p,q) ~ c(p,q) To eip~x eq.(lX)y, (p,q) e Co,

-i(
p x - qy ) + R ei(p x + qy  (p,q) E C

for y *_-o. In §8 it is shown that one may take

{(27r) -3/2 c(_) p1/ 2 (co), (p,q) E C+ U CO,

(1.59) c(p,q) - 3/2 C p1/2 (_00) (pq) C

and the completeness of the set + of normal mode functions

is derived from that of {4+, _, p,1,4 2,...}.

Another family of normal mode functions for A is defined by

(1.60) 0_(x,y,p,q) - 0+(x,y,-p,q), (p,q) e C+ U C U C_.

.1 It is clear that A _ = X(p,q) *b and

I
'i4
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(1.61) 0_(x,y,p,q) - (21) - 1 eip ,x  .(y,p,q)

where

(1.62) *_(y,p,q) = *+(y,p,q).

The asymptotic behavior of 0_ for y m ±may be derived from (1.57),

(1.58), (1.59). It is given by

e ( p x + q y )  i(p-x-qy) (p,q) E C+,

(1.63) 0_(x,y,pq) - c(pq) e(Px+qy) + o eP , (p,q) e C.,

e e ( p -x - q+ ( I p i X) y ) , (pq) E C-,

for y 4 and

Y + e' ( p -x + q - ( Ip l ' X) y )  , (p,q) E C+,

(1.64) 0_(x,y,p,q) - c(pq) Y. eiP.X eq_'(Iplk)y , (p,q) e Co ,

•i(p'x+qy) + ei(pox-qy) (p,q) e C,

for y * ... These relations clearly imply that *_(x,y,p,q) is not

simply a multiple of *+(x,y,p,q). By contrast the guided mode functions

have the symmetry property

(1.65) Jk(X,y,p) ' *k(x'y,-p), k > 1,

because they are real-valued and depend on p only through 1pl.

The completeness of the family ,, . is derived from

that of {0,1, 2, ..} in §8. The existence of the two families and

4- is a consequence of the invariance of the wave equation (1.1) under
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time reversal. The family _ is useful in the construction of asymptotic

solutions for t * +- of (1.1); see (19].

The remainder of this paper is organized as follows. §2 contains

a construction of the special solutions (1.26) of A - X. In §3 the

results of §2 are applied to characterize the point spectrum and contin-

uous spectrum of A.. The eigenfunctions and generalized eigenfunctions

of A P are constructed in 4. In §5 the Weyl-Kodaira theory is applied

to construct an eigenfunction representation of the spectral family of

A . §6 contains an analysis of the dispersion relation (1.28) and the

p-dependence of the eigenvalues Xk(P) of A,. In §7 the results of H5

and 6 are used to construct a normal mode representation of the spectral

family of A. The normal mode expansions for A are derived in §8. The

cases of semi-infinite and finite layers are discussed in §9. §10

contains concluding remarks concerning applications and extensions of

the theory. A formulation of the Weyl-Kodaira theory appropriate for

the analysis of A is given in an Appendix.

The analytical work needed to derive and fully establish normal

mode expansions for a large class of stratified fluids is necessarily

intricate and lengthy. This is clear from examination of the simple

case of the Pekeris model given in [17]. Therefore to make the work

presented here as accessible as possible the concepts and results of

each section are formulated in the first portions of the sections.

Detailed proofs are placed at the ends of the sections and may be

omitted without interrupting the exposition.

.1
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§2. Solutions of the Equation A. * -

The special solutions *j(y,i,) (j - 1,2,3,4) described in §1

are constructed in this section. Analytic continuations of these func-

tions to complex values of X are used in §§3 and 5 for the calculation

of the spectral family of A . Hence the more general case of solutions

of A * - $ with C E C will be treated.

The equation A 4 C O cannot have solutions in the classical

sense unless c(y) and p(y) are continuous and continuously differentiable,

respectively. A suitable class of solutions is described by the

following definition in which AC(I) denotes the set of all functions

i! that are absolutely continuous with respect to Lebesgue measure in the

interval I - (a,b) C R.

Definition. A function : I - (a,b) - C is said to be a

solution of

(2.1) AP 0(y) =-c2(y){p(y)(p-1(Y) 0,(Y)), - U20(y)} =  O(Y)

in the interval I (where *' = do/dy) if and only if

(2.2) Oe AC(I), P-'O' E AC(I)

and (2.1) holds for almost all y E I.

The following notation will be used in the definition and

construction of the special solutions 0 (y,p,;). For each K > 0

L(,,) - { Re < K,112 }

(2.3)

R (K - Re > > i/2 },

17
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(2.3 cont.) R±( ) - R(K) n { ± im > 0}.

The definitions (1.24), (1.25) will be extended as follows.

, (c-2 ) - .2)1/2

(2.4) -7/4 < arg qz(UJ,;) < 7r/4 e R(c(±-)Ii)

and

q -( ( 42 - c-z4+_=))1/2

(2.5) -w/4 < arg q'.(u. ) < 1T/4 E Lc(_aa))

-+ -i q_(,)

The results of this section will now be formulated.

Theorem 2.1. Under hypotheses (1.3), (1.4) on p(y), c(y) there

exist functions

(2.6) R x R+ x (L(c(o)P) u R(c(2)u)) * C, j - 1,2,

(where R+ - (P I i > 0}) such that for every fixed (u, )

E R+ x (L(c(-)I) U R(c()vi)), *j(y,V, ) is a solution of (2.1) for ye R

and j - 1,2 and

01(y,-,) - exp {q4(u,C)y}[l + o(l)] ]
(2.7) Y 0 +O,

-1 1-1 ol]

P. (y) p ( C;(P,) exp {q.(U,)y}[1l + o(1)]

and
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02(Y,1,0) exp {-q4(i,)y}[l + o(1)]

(2.8) Y +0.

(y) €'(Yp, ) = -p-l(°°) qcp ,C) exp {-q. ,)y}[ + o(i)]

Similarly, there exist functions
I.

(2.9) R x R+ x (L(c(-=)p) U R(c(-o)p)) C, j - 3,4,

such that for every fixed (p,C) E R+ x (L(c(-o)u) U R(c(--)p), (y'P,0

is a solution of (2.1) for y E R and j = 3, 4 and

03(yUC) - exp {q_(11, )y}[1 + o(l)] I
(2.10) Y-"*0")'

P (y) (y,u,-) p (--) q'(p,C) exp {q_(1, )y}[1 + o(1)]

and

-,(Yp, ) exp {-q'(p, )y}[1 + o(1)]

(2.11) y -
P- (y) (y,p.,) - -_- (-)q'(P,) exp {-q'(iu, )y}[1 + o(1)]

The following three corollaries describe the dependence of the

solutions (y,u,;) on the parameters 4 and .

Corollary 2.2. The functions , satisfy

(2.12) Oj, p_ 1 E C(R x U {(i,¢) I ¢ G L~c()1J)}

for j 1, 2 and
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(2.13) P- E C CR L (c~
P >O'-

for j - 3, 4. Moreover

09 P- R x [ C j g

(2.14)

0)2, P- 10 E C(R xjj (u) ERco)i)}

Li:
e3 R x (U , R- (c ( -) )o 3 ' P 0 3 C ( 4

041 P 01Sc R x U ,) I . R(c(-)) .

Corollary 2.3. For each fixed (y,p) 6 R x R+ the mappings
-1,

(2.15) p- "j(YU, ), p (y) 0)(Y,P,;)

are analytic for

j = 1, L(c(=)U) u--R (c(=)) Ut ,

(2.16)
j(- 2, e L(c(-)p) U R-(c()u)int

j 3, G L(c(-)P) U R-(c(- )i)int,

j - 4, E L c(-)j) u R+(c(-_)U)int

where R (K)int = -(K) M ± ;I > 0}.

Corollary 2.4. The asymptotic estimates for 4i and p $j of

Theorem 2.1 hold uniformly for (p,C) in any compact set r such that for
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j-1, r1 c J {(e,)~eL~()~)uR(c(o)1i)}
(2.17)

2 2, r. c U {(E,) I e L(c()Ij) u R-(c()Ii)},

3 r 3 C [ E+ L(c(-))Ii) u)

j =4, r4c C U (i~ C r= L(c(--)j) U R(c(-o)Ii)}.
P0

The special solutions (y,pC) are not, in general, uniquely

determined by the asymptotic conditions (2.7), (2.8), (2.10), (2.11).

Indeed, if Re q4(,A) > 0 (resp., Re q'(u,X) < 0) it is clear that any

multiple of *2 (resp., 01) can be added to 01 (resp., 0.). A similar

remark holds for 03 and 0. However, for each C E C a sub-dominant

solution (one with minimal growth at y = or y = -oc) is unique. In

particular, since

Re q'(p,1) > 0 for e L(c(± )i)

(2.18)

Re q(, > 0 for R-(c(±-)p)

Re q.(p, ) < 0 for { R+(c(tc)h)

one can prove

Corollary 2.5. The solution , is uniquely determined by (2.8)

for all L(c(o)Ii) u R-(c()u). Similarly, (3 is uniquely determined

by (2.10) for E L(c(--)p) u R-(c(- )P), 01 is uniquely determined by

(2.7) in R+(c(-)p) and 04 is uniquely determined by (2.11) in R+(c(-)p).
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When Re " C2 (±o)1J2 Theorem 2.1 provides no information about

the asymptotic behavior for y + ±o of solutions of A ¢ - 4. However,

positive results can be obtained by strengthening hypothesis (1.4). The

following extension of a known result [11, p. 209] will be used in §3.

Theorem 2.6. Assume that P(y) and c(y) satisfy hypothesis (1.3)

and

(2.19) Ip(y) p(-)l dy < , 2 Icy) c(-)l dy
0 0

Then there exist functions

(2.20) R x R+ - R, j = 1,2,
i.

such that for every p E R+ the pair 41 (Y,0), 02 (yI) is a solution basis

for A P ¢ c2(_)=2¢,

el(y,]/) - 1 + o(i)

(2.21) y + +.

- (y) ¢(yP) " o(i)

and

02 (y,P) = p(oo)y[l + o(i)]

(2.22) y + .- 1 IP (y) ¢ (y,P) - I + o(1) i

Lagrange's formula for AP may be written

Y2 -1(2.23) j Au € - 0 AU ,} c (y) p (y) dy = [#1(y2 ) - [q,](yj)
Yi
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where

(2.24) (01(y) = (y)(p- (y) V'(y)) - (y)(P- (y) 0'(y)).

In particular, if and i are solutions of A t = , A = ip on an

interval I then [#](y) = const. on I and [#](y) i 0 on I if and only

if 0 and i are linearly dependent there. By combining these facts and

Theorem 2.1 one can show that

[cP(',ii, ) 2(',, )] = -2 p-'(-) 6 (j, ),

(2.25)

[O3(,'.).) t,('., .?)] = -2 p-(-)q ('.g).

which imply

Corollary 2.7. The pair 1(y,j, ), p2 (YIP) is a solution

basis for A. 0 = O for all (u,C) 6 R+ x (L(c(-)p) u R(c(-)p)).

Similarly, the pair c3 (Y,,O), 0 4 (yi,) is a solution basis for all

(P,t) G R+ x (L(c(--)p) u R(c(--)p)).

This completes the formulation of the results of §2 and the

proofs will now be given. The method of proof involves replacing

AB P = C by an equivalent first order system. The latter can be

regarded as a perturbation of the corresponding limit systems for

y + ± . In this way integral equations are established for solutions

with prescribed asymptotic behavior for y - or y - - and these

equations are solved by classical Banach space methods. This technique

for constructing solutions with prescribed asymptotic behavior is well

known - see for example [3, p. 1408] and [12, Ch. VII].

J A first order system equivalent to A. f . If 0(y) is any

* solution of (2.1) on an interval I and if

.t
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I 1(y) =(y)

(2.26)
(Y) = --(y) ,(y)

then 4IP, *2 E AC(I) (cf. (2.2)) and

*p(y) - p(Y)[ 2 
-(Y)

(227 q(y) _ -* (y)[2 _ C-2 (y)j ] p(Y)

for almost every y E I. Thus the column vector 1(y) with components

IP,(y), 42(y) is a solution of the first order linear system

(2.28) )' (Y) = M(y,i,) ;P(y)

where

0 P(Y)
0 -~) -p cy2y)

(2.29) M(y,',)y

P - 1 YI2 - -2() 0

Conversely, if 4. E AC() is a solution of (2.28), (2.29) and if 0(y)

= 4 1(y) then 0 is a solution of (2.1). The solutions of Theorem 2.1

will be constructed by integr-ting (2.28), (2.29).

The limit system for y - +m and its solutions. By replacing

P(y), c(y) in (2.28), (2.29) by P(-), c(-) one obtains the system

(2.30) V'(y) - M0(, ) 4(y)

where

777;
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fP
(2.31) MO(, ) C) P-2 (o)[2 C-2 (_o)] 0

M0(iC) has distinct eigenvalues q;(jj, ), -q4(p,;) for r
E L(c(o)hi) u R(c(-)p). The columns of

(2.32) B

are corresponding eigenvectors. Hence

(2.33) MOWu,C) B(jj,z) =B(ji,C) D(ji,C)

where

00(2.34) D(P, C)

System (2.30), (2.31) may be integrated by the substitution

(2.35) - B( i,) z.

It follows that z'(y) - D(P, ) z(y), whence

(2.36) {z(y) - cl exp q4.C(],) y}

z2 (y) - c2 exp {-q;(1j, ) y}

3 and therefore
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(y) - c, exp {q4(P4,OY} +C 2 exp (c;p y

(2.37)

=P(y -' P q v )c ex {' p yl - c, exp {q(,~}

where c1 , c2 are constants of integration.r

Application of perturbation theory. System (2.28) may be

regarded as a perturbation of the limit system (2.30). Thus if r

N(y,Ii,Q is defined by

(2.38) M(y,'1t,0 MO(j~ I-Nyu~

then

0 a,(y)

(2.39) N(y,II,C)

11 a2Cy) + a (y) 0

where

a1(y) =p(y) - P(-o)

(2.40) a2(y) P- I (y) - p-,(-)

a (y) - - (y) c- y)-p ()c

Note that each of these functions is in L1(y0,-) for every yo G R. For

a,(y) this is part of hypothesis (1.4). For a2Cy) and a3(y) it follows

from (1.3) and (1.4). For example, one can write

(2.41) a,(y) - (-p- (o)p 1 (y))(p(y) - P(oo))

which exhibits a as a product of a bounded measurable function and a

function in L1Cy0,w).
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On combining (2.28), (2.38) and making the substitution (2.35),

one finds that (2.28) is equivalent to the system

(2.42) z'(y) - D(U, ) z(y) + E(y,p,C) z(y)

where

(2.43) E(y,1, ) - B- (1,;) N(y,lj,C) B(lj,;)

has components that are in L1 (y0,oo). Solutions of (2.42) will be con-

structed which are asymptotically equal, for y + , to the solutions

(2.36) of z' - D(P,;) z.

Proof of Theorem 2.1. The proof will be given for the function

0, only. The remaining cases can be proved by the same method. Solu-

tions of (2.42) are related to the corresponding solutions of (2.1) by

Z I z + z 2

(2.44) -

1- Z11 2 q;(~ q;(z (P C),~

Thus 0 will be a solution of (2.1) that satisfies (2.7) if z is a solu-

tion of (2.42) that satisfies

(2.45) z- = exp {q4 y}l z2 - exp {q; y} n2

and

(2.46) nI(y) 1 1 + o(l), n 2 (y) o(l) for y .

Equations (2.42) and (2.45) imply
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• 1s Ell n1 + E1 2 T29

(2.47)
-1 2 Cl; n 2 + E 2 1 1 , + E 2 2 T 2

and hence by integration

ly
rnl(y) - c1 + E sj(y') nr(y') dy' r

yo

(2.48)

n2 (y) - exp {-2 q4 y} c2 + J exp {-2 q.;(y - y')} E2j(Y') n.(y') dy'

where c,, c2, Y0, y, are constants and the summation convention has been

used (j is summed over j - 1,2).

Construction of 01 for ; e L~c(c)p). By (2.18), Re q+(U,) > 0

for all G L(c(-)P). Thus to construct a solution of (2.47) that

satisfies (2.46) it is natural to choose cI -1 , c2 - 0, y0o 4 and

y, finite in (2.48). This gives the system of integral equations

ni(y) = 1 - J E1 (y') nj(y') dy'

(2.49) y > Y1.

n2(y) - J exp {-2 q4(y - y')} E2 1(y') nlj(y') dy'

It is natural to study system (2.49) in the space

(2.50) X - CB([y,o),C 2)

of two-component vector functions of y whose components are continuous

and bounded on < y < " X is a Banach space with norm
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(2.51) Inl - sup (1nl(y)I + In2 (y)).
Y>y1

The system has the form

(2.52) n(y) = no + K(y,y') n(y') dy', y > yl'

where n(y) and no are column vectors with components (n(y),r2 (y)) and ii

(1,0), respectively, and the matrix kernel K(y,y') is defined by i
0 Yi Yy' "Cy

(2.53) K1 j (y,y') - {
exp [-2 '(y - y')} E(y'), Y, y

, 
< y

,
(2.54) K -(yy) -y)

0 , y1 <y<y',

and j = 1,2. The conditions Ejk E LI(yl,-) and Re q4 > 0 imply that the
operator K defined by (2.52), (2.53) and (2.54) maps X into itself. To

show that K is a bounded operator in X and estimate its norm note that

(2.55) [(Kn) < i rlml f ([Ej(y)l + JJ2(y) 1) dy
IY

for j - 1,2 and all y > yl. It follows that

(2.56) IKI < I JEjk(Y)l dy.
y1 j,kml

In particular, since Ejk r L(Yo,) for every y, E R, (2.56) implies

that IIKI < 1 for every sufficiently large y,. For such a value of y,
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the equation

(2.57) r n - 0 + KTI

has a unique solution n E X given by

(2.58) -i o

Moreover, (2.57), or equivalently (2.49), implies that ni(y), n2(y)

satisfy (2.47) for y > y,. These functions then have unique continuations

to solutions of (2.47) for all y E R, by the classical existence and

uniqueness theory for linear systems.

Of course, ni and n2 are functions of U and as well as y r

because q; and the Ejk depend on these variables. The solution , of

Theorem 2.1 will be defined by

1'
(2.59) 4I(Yj,;) - exp 'q4(i,)y}(n 1 (y,1 ,) + %(Y,1,1)

To complete the proof that *j is the desired function on
R x R+ x L(c(-)u) it is only necessary to verify that (2.46) holds for

each (W,) R+ x L(c(-)U). It is clear from (2.49) that

Go 2
(2.60) nI1(y) - 11 < nnfI Jy E j(y') I dy' - o(1), y -- 4=.

y J-1

For n2, (2.49) implies that

In 2Cy)1 < l [ exp {-2q (y-y')} 2 JE .i(y')Idy' + 0 JE 2j(y)ldy'

(2.61)
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for every Y2 > Y and every y > y2. Hence for any fixed y2 one has

(2.62) lir sup In (y)I < Iti I E2 (y')I dy'
Y-MO 22 j- 2j

because Re q' > 0. Since Y2 in (2.62) is arbitrary it follows that

n2(y) - o(1).

Construction of i for C e R(c(-)u). By (2.3) R(c()u) has the

decomposition

+ int
(2.63) R(c(-)u) - R (c(-)uj) U R-(c(-)u)int

Moreover, for E R-(c(-)U) i n t one has Re q4(p, ) > 0 and hence the

construction of the preceding case is valid. In the complementary case

where E R+(c(o)u) one has Re q(WO) < 0 and it is permissable to take

c, = 1, c2 = 0, y0  y1 . in (2.48). The resulting system of integral

equations

ni(y) " 1 - JE1 j(y') nji(y')dy'

I y
(2.64) Y YI

n2(y) =  - exp {-2qi(y-y')} E.J(y') nj(y')dy

again defines an equation (2.57) in the Banach space X. Moreover,

lexp {-2q'(y-y')J < 1 for y < y' < - and (2.56) is again valid. It

follows that for y, large enough (2.64) has a unique solution given by

(2.58). The solution has a unique continuation to a solution of (2.47)

on the interval y E R. The validity of the asymptotic condition (2.46)

is obvious from (2.64); cf. (2.60).
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Proof of Corollary 2.2. Again the proof will be given for 01

only. Note that by (2.39)

(2.65) N(y,'U,) - N1 (y) + 2 N2(y) + C N3(y)

where the components of N (y) are in L,(yo,w) for j 1 1, 2, 3 and every

yo E R. Thus by (2.43)

(2.66)

- B- I (.,C)Nj(y)B(p, )+ p.2B- 1(,;)N,(y)B(p,;)+ B- 'jC)N 3 (y)B(p,;)

Proof of (2.12) for 0i. Note that q4iO), and hence also

B(p,C) and B -(P,;) are continuous functions on the set

(2.67) U {(i,C) I C e L(c()Ii)}.

P >O

Thus by using the estimate (2.56) for the operator K - K(U, ) in X one

can show that for each compact subset r of the set (2.67) and each 6 > 1

there is a constant y1 - Y1(r,6) such that, taking y, - Y1 (,6) in the

* 1definition of K(P, ), one has

(2.68) IK(P,)I < 6 for all (C,) r r.

Hence the series (2.58) converges uniformly in X for (Po e r which

-1,
implies the continuity of 0, and p 0 on the set [ylo) x r. Their

continuity on R x r then follows from the classical theorem on the

continuous dependence of solutions of initial value problems on

parameters. This implies the result (2.12) for 01 because r was an

arbitrary compact subset of the set (2.67).
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Proof of (2.14) for 4z. The method used in the preceding case

is applicable to the operator K(p, ) in X defined by (2.64).

Remark on Corollary 2.2. The argument given above can also be

used to show that T
(2.69) , p E C R x ((, ) j U e R-(c(-)int}(2.69) 1 >0

However, the continuity of 0, and P-_ on the set

(2.70) R x U {(p,;) I c E R(c(-)p)}
11>0

cannot be asserted since the constructions for C E R+(c(a)P) and

E R-(c(-)p)in t are different. Indeed, continuity of 0, on the set

(2.70) is not to be expected since 01 is not uniquely determined when

e R-(c(-)p) in t .

Proof of Corollary 2.3. The components of the matrix-valued

function E(y,jj,C) are analytic functions of ; e L(c()Ij) U R+(c(_)U)int

for fixed values of y, p. Hence the uniform convergence of the Neumann

series (2.58) on compact subsets of this set, which follows from the

proof of Corollary 2.2, implies the validity of Corollary 2.3 for 0,.

The remaining cases can be proved by the same method.

Proof of Corollary 2.4. The proof will be given for the case of

01 and (p,C) in a compact subset r of the set (2.67). The remaining

cases can be proved similarly. 01(y,p,;) was defined by (2.59) and the

functions n (y,p,C) satisfy
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- 1 E - E1j(
y''u ' ) tJ(Y',I,) dy',

(2.71)

%(Y'41 -fy exp (-2cq4(P,M)y-y')} E 2 J (y', i (yj dy'.r

It must be shown that these integrals tend to zero when y - , uniformly

for (j, ) G r. Now (2.58) and the estimate (2.68) from the proof of

Corollary 2.2 imply that In(',i, )| < (1 - 6)-' for all (p,c) E r. It

follows that for fixed y' > y > y,(r,6) one has

nE kJ(Y',P,0 rl iy',ii1,) on <_E(y',pj,C)I IN(y',w,.)1

(2.72)

for (u,) E r. Now the continuity of B(p,C) implies that there is a

y - y(r) such that

(2.73) IB(.,)I 1B' (i,6)I(1 + p2 + I 1) < y for (p,;) E 1

It follows from (2.66) that

3
(2.74) IE(y',;I,)l < y Z I N(y')I, (1,1) e P.

jul

Combining (2.71), (2.72) and (2.74) gives

(2.75) jnj(y,p,C) - 11 _ y(l - 6)- 1 INf(y,) dy'
0y Jul

for all y > yl(r,d) and (p,;) C r. Since each Nj E L2 (y0,oo), (2.75)

implies that nl(y,p,;) - 1 u o(l) uniformly for (,) e r'.
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The case of l2(y,PC) is more complicated. Note that

<na(y.P-l f exp {-2 Re q..(, )(y-y')} ON.(y') dy'.

(2.76) j=l

Now the continuity of q+(P, ) and the definition of L(c(w)) imply that

there is a K = K(r) > 0 such that

(2.77) 2 Re q+(U,C) > K > 0 for all (p,c) e r.

Combining (2.76), (2.77) one has, if y y(l-6)

In2 (y,iU,Y_) I

(2.78)

Y2  3 + 3
<1 exp {-K(y-y')} IN(y')Idy' + IN (y') dy'

- y j=l Y2 j=l

< YJ exp {-K(Y-Y2) f IN.(y')Gdy' + J I nIN(y')Ildy'"

y, j=l Y2 j-i

for all y2 > y1 (r,d), y > Y2 and (w,) G .

Now let E > 0 be given and choose y2 = y2 (E,r,6) > y1 (,6) such that

(2.79) Y1 Z INi (y')O dy' < E/2,

y2 J-l

and hence

(2.80) 1n2(Y,,;)] < Yj exp {-K(y-y 2 )} ON lN(y')H dy' + /2

for all y > y2 (e,r,6) > yl(r,6 ) and (p, ) E r. Finally, choose a

, / m
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y3(e,r,s) > y2(erd) such that

r~ 3
(2.81) y, exp {-K(Y-Y 2 )} J INj(y') dy' < E/2

Y1 j - J

for all y > y3(e,F,
6 ). It follows from (2.80) and (2.81) that

In2(Y, , ) < e for all y _> y3(c,r,S) and (p, ) E F; i.e., n2 (YII,)

= o(l) uniformly for (P,C) E r.

Proof of Corollary 2.5. It will be shown that 01(y,jC) is

uniquely determined by (2.1) and (2.7) when C E R+(c()p). The other

cases are proved similarly.

Assume that for some C E e(c(o)) there are two solutions of

(2.1), (2.7). Then their difference 0(y) would satisfy (2.1) and

0(y) = o(l), p-1 (y) 0'(y) = o(l) because Re q+ f 0 for h

It follows that the corresponding pair q1 (y), n2 (y), defined by (2.44)

and (2.45), would necessarily satisfy

1 (y) = E j(y') ni.(y') dy'

y
(2.82)

n2(y) ;-C exp {-2q4(y-y')} E j(y') n (Y') dy'
y 2

since lexp {-2q4(y-y') l < 1 for y < y'. But (2.82) is equivalent to the

equation n - Kn in X. If y1 is chosen so large that IIK0 < 1 then rj =KI

has the unique solution r(y) - 0 for y > yl. The unique continuation of

this solution of (2.47) is then zero for all y E R. Thus (y) E 0 for

y E R, which proves the uniqueness.

Proof of Theorem 2.6. The equation A # = c2 (o_) p
2
o is equi-

valent under the mapping (2.26) with the system (see (2.31), (2.38))
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(I ( )P 2 + B
1
(y)p.2

(2.83)

where BI(y) - al(y) = P(-) - p(°) and

B2 (y) p p2 p-(y)(l - c2 (oo)c-2 (y))

(2.84)

= P 2-
1 (y) C-2(y)[c(y) + c(_)][c(y) _() ]

It follows from hypotheses (1.3) and (2.19) that

(2.85) B1 (y), B2 (y), y B2 (y), y2 B 2 (y) E L (Y0 ,
-
)

for every y0 E R and every p > 0.

Construction of 01. Application of the variation of constants

formula to the system (2.83) gives the integrated form

'1 (y) = C1 + p(o') c 2Y + f1 {p(o)(y-y') B2 (y') i 1 (y') + B1 (y') l2(y,)}dy,

(2.86)

S2(Y) = C2 + B2 (y') iP,(y') dy'.
1 YO

Now 0, will satisfy A. c c2 (_)112 01 and the asymptotic condition (2.21)

provided that 0 1 = ' - satisfies (2.86) and

(2.87) '(Y) 1 1 + o(l), '2 (y) = o(l), y

To construct such a solution take c, 1, c2 = 0 and y0 o in (2.86).

This gives the system

" ....... .. ........ ... 1 ' -' i ... .. " : " -" -= ...: ... - ' -| - ' ' - ... , i ......... .: . .. .-" - .. .." ' "
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F ,(Y) = 1 - {p(oa)(y-y') B2 (y') p1(y') + B1(Y') lP2(y')} dy'
y

(2.88)

2()= -fy B2 (y') Ip(y') dy'

or

(2.9) ~ '0 f K(y,y') ip(y') dy', y yl

where IP(y) and P0 have components 'P1(y), P2 (y) and 1, 0 respectively,

K(y,y') 0 for y >y' and

K11(y,y') = p(-)(y'-y) B2(y')

(2.90)

K12(y,y') - -B1(y')

K(y,y') =-B (y')

K 22(y'y') =0

for y < y'. As in the proof of Theorem 2.1, one has

(2.91) ICKip) Cy)I < HoP j', CIKjlCy,y')l + IK .2(y,y')I) dy'

and hence

I(KO) 1y)I 10 ItPII f) Jc (y-iy')B 2(y')Idy' + .f B1(y')Idydl
(2.92)

<IPI {02p(-) J 'IB 2 Cy')jdy' + fo lB1 (y')!dy'}
I.y y
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and

(2.93) I(KP) 2 (Y) 1 fl*PI y IB2Cy')l dyl

In particular,

(2.94) IKI < 2&(-) y'1B 2 (y')Idy' + f IB1(y')Idy' + f IB2 (y')Idy'
y1  y1  Y,

Thus (2.85) implies that K is contractive in X for y, large enough.

Hence (2.88) has a unique solution on [yl,oo) which can be continued as a

solution of (2.83) to all y E R. Moreover, (2.88), (2.92) and (2.93)

imply that 1p1(y) - 11 = j(KtP) 1(y)I = o(l) and 142 (y)I = I(K0)2(y)I

= o(l). In fact (2.85) implies that 1P2 (y)I = o(y- 2). Thus (2.87) is

satisfied.

Construction of 02. 2 will satisfy A, 2 _ C
2 (a.)U 242 and the

asymptotic condition (2.22) provided

(2.5) 4(Y) - 02(Y) - P(-)Y n1(y)
i (2.95)

12 (y) = W0(Y)42 (Y) = n2 (Y)

where

(2.96) rl1(y) - 1 + o(l), r2 (y) = 1 + o(1), y .

Substituting in (2.86) with c, 0, c2  1 and y0 - - gives, after

simplification,
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q1(y) 1 y - 1P)(Y'-Y-Y)B 2(y)l(y') + P-(o)y 1'B (y')n2(yI)}dy'

(2.97)

n2,(Y) 1 -JP&)y'B(y)li(y')dy'.

or

(2.98) nj(y) no + K(y,y') n(y') dy', y y>

where rl(y) and fl0 have components fl1(y), p2 (y) and 1, 1 respectively,

K(y,y') E0 for y >y' and

Kl1(y,y,) p('_)(-Y, + f-ly' 2)B2('

(2.99)

K1 2 (y,y') -p '(-)y I B1CY')

*K 21 (y, y') - (-) y' B2 (Y')

KZZ(y,Y') 0

for y y.It follows from (29)that

(Yn) Y) I ani {P(- J (yI+y-'y12)IB 2(y1)Idy' + p-l (o)yl 1B1(y')Idy'}

(2.100)

and

(2.101) J(Kn) 2(Y)j Ird n o) J y' 1B2 (y')l dy'
y

In particular,
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I < P(-o) y'1B 2 (y')Idy' + p()-)y J y' 2 iB 2 (y')Idy'

(2.102)

+ p-,()y7 J IB,(y')ldy' + p(o) y, IB2 (y')Idy
Y 1  

yl/

Hence (2.85) implies that K is contractive in X for y, large enough and

a unique solution is obtained as in the preceding case. Finally,

(2.100) and (2.101) together with (2.85) imply that (2.96) is satisfied.

The existence of the special solutions has thus been

proved. Their linear independence follows directly from (2.21), (2.22).

Proof of Corollary 2.7. This was verified by (2.25).

*1

II
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§3. Spectral Properties of A .

The results of §2 are used in this section to derive precise

results concerning the location and nature of the spectrum of A . The

notations 0(A ), o0 (Ap), Oc(A ) and ae(A.) will be used to denote the

spectrum, point spectrum, continuous spectrum and essential spectrum of

Aw, respectively. The definitions of [8, Ch. X] will be used. In

particular, a (A ) is a closed set and a (A ) is the set of all non-
c el

isolated points of o(A). Note that the properties of A. described by

(1.19) imply that a(A,) c [c'2 2,,).

The Point Spectrum of A . Theorem 2.1 and its corollaries imply

the following three lemmas concerning o0 (A).

Lemma 3.1. For all p > 0,

(3.1) cro(A,) C 2 ',c2(,_)l.,2].

Lemma 3.2. For all U > 0,

(3.2) a(A ) 2 [c 21 2 ,c 2 (_) 2 ) C C0(A).cil
Moreover, o0(AU) is either a finite set (possibly empty) or a countable

set with unique limit point c2 (a)12 .

Lemma 3.3. The eigenvalues of A that lie in the intervalU

[c 2 2, c2 (G)V2) are all simple.

The possibility that c2 ()1 2 e o0 (A ) is not excluded by the

hypotheses (1.3), (1.4) alone. Criteria for c2 (o)Pi2 0 00(A) are given

below.

It will be convenient to use a notation that permits a unified

discussion of the cases of finite and infinite point spectra o0 (A).

43
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The number of eigenvalues in [c21P2,c2 (_)p2 ) will be denoted by N(p) - 1.
M

Thus N(P) is an extended integer-valued function of p > 0 (1 < N(U)

< +-). The eigenvalues of A in [c2iP2 ,c2(_)U2), arranged in ascending
P m

order will be denoted by Xk( ), 1 < j < N(P). Thus

(3.3) mC 2 11 2< X < X2(11) < ... < c2(_)U 2 .

The corresponding eigenfunctions are

(3.4) k(y,') - ak(U) 12 (Y, ,IP()), k f 1,2,...

where ak( ) > 0 is chosen to make flk(,.)I - 1.

The Continuous and Essential Spectra of A . Lemma 3.2 implies

that e(A U) C [c2(_)U2,'). Moreover, C (A P) and a CeA) are closed and

ac(A) C ae(AP) (8, Ch. X]. The characterization of these sets will be

completed in §5 by showing that (c 2 (_)w 2 ,_) C a (A ). These facts imply

Theorem 3.4. For all P > 0,

(3.5) ac(A) e(A) [

A direct proof of Theorem 3.4 can be given by using the special

solutions of §2 and a criterion of Weyl; see [3, p. 1435].

It is known that the bottom point in the essential spectrum of a

Sturm-Liouville operator A can be characterized by the oscillation

properties of the solutions of AO - X4 [3, p. 1469]. For the operator

A. the characterization is described by

Corollary 3.5. The equation A 1 - X0 is oscillatory (every

real solution has infinitely many zeros) for every X > c2()li2 . The

equation is non-oscillatory (every real solution has finitely many zeros)

for every X < c2(_)p 2 .
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These results for A follow directly from Theorem 2.1.

The Point Spectrum of A (continued). The equation A -

may or may not be oscillatory for X - c 2 (oo) 2 . This property is shown

below to provide a criterion for o0 (A ) to be finite. The basic tool in

establishing such criteria is the classical oscillation theorem of Sturm.

A version suitable for application to A may be formulated as follows.

Let I - (a,b) be an arbitrary interval (_o < a < b < +4) and

consider a pair of equations

(3.6) Lj- (PjW(y),), + Qj(y)O - 0, j - 1,2,

where P (y) and Q (y) are defined and real valued for almost every y E I,

P (y) > 0 for almost every y E I and Pi, Qj are Lebesgue integrable on

compact subsets of I (J 1,2). A solution of (3.6) on I is a function

E AC(I) such that pj' ' E AC(I) and (3.6) holds for almost all y E I.

Such solutions are uniquely determined by the values *(y0) -c,

Pj1 (y0)O'(y 0) - cl at any point y0 e I. Pairs of equations (3.6) such

that

(3.7) PI(y) < PZ(Y), QM(y) < Q2(y) for almost all y e I

will be considered. When (3.7) holds the operator L2 is said to be a

Sturm majorant of operator L,, and the operator L, is said to be a Sturm

minorant of operator L2, on I. Sturm's theorem may now be formulated

as follows.

Theorem 3.6. Let *j(y) 1 0 be solutions of Lj = 0 on I

(J - 1,2) and assume that y1 and y2 are successive zeros of 01(y) in I,

with y, < Y2 " Moreover, let L2 be a Sturm majorant of Li on (YOY2 ).

Then *2(y) has at least one zero in [y,,y 2). In addition, if either
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Q1(y ) < Q2 (y) or P,(y) < P,(y) and Q2(y) 0 0 on a subset of (yl,y 2)

having positive measure then *2(y) has a zero in (y1,y2).

The special solution 3(y,iPX) is real valued, tends to zero

exponentially when y -m and has finitely many zeros when X < C 2(_)11 2.

Theorem 3.6 will be shown to imply

Corollary 3.7. If X1 < X2 < C2(_)p2 then 0 3(y,AIX,2) has at

least as many zeros as 03(y, ,%).

It will be convenient following [3, p. 1473] to introduce the

sets

(3.8) Ik f Ik(P) - {X I 03(y,p,X) has exactly k zeros}, k = 0,1,2,...

Note that by Corollary 3.5 each I C (-o,c2()1 2]. The point c2 (o) . 2

may or may not be in one of the sets Ik* Corollary 3.7 implies that

each Ik is an interval and Ik lies to the left of Ik+i for k - 0,1,2,'--.

It is important for the analysis of a0 (A ) to know that the intervals

Ik A 0 for k = l,2,',N(P) - 1. This is a corollary of the following

fundamental oscillation theorem.

Theorem 3.8. If o(A P) 0 0 then for k - 1,2,...,N(p) - 1 the

eigenfunction k(yp) has precisely k - 1 zeros.

Corollary 3.9. If a0(A P  # then

(3.9) 1k - (Ak(P),Ak+X ()], k - O,,..-,N(u) - 2

(where A0(P) S --). Moreover, if N(M) < - then 1) c2(_)W 2 )

Corollary 3.10. The number of eigenvalues that satisfy

Ak(P) < X < c2
(_)U

2 is equal to the number of zeros of 03(y'PX).
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Criteria for the Finiteness of a O(A ). The principal criterion

for G0(A.) to be finite is described by

Theorem 3.11. a0 (A,) is finite if and only if the equation

A = c2(-)p2O is non-oscillatory on R. Hence ao(A) is infinite if

and only if AU 0 = c2(o)U20 is oscillatory on R.

It is shown below that Theorem 3.11 is a consequence of Theorem

3.8 and Sturm's comparison theorem.

Corollary 3.12. If c(oo) < c(--) then o0 (A ) is finite if and

only if 0 3 (y, I,c 2 (_)p 2 ) has only a finite number of zeros.

Specific criteria for the finiteness of a0 (A ) will now be

obtained by deriving criteria for A 0 = c 2 (o)ii 2 o to be non-oscillatory

and using Theorem 3.11. It will be assumed that c(-) < c(--) so that

A c2(_)1 2 is non-oscillatory in neighborhoods of y - -o. Cases

for which c(-o) - c(--) may be treated by applying non-oscillation

criteria at both y - oo and y -w.

A criterion for a0 (A) to be finite is provided by Theorem 2.6.

For under the conditions of the theorem A M C2 (o)11 2 has a solution

basis 01, $2 satisfying (2.21), (2.22). It follows that the equation is

non-oscillatory. This implies

Theorem 3.13. If p(y), c(y) satisfy (1.3), (1.4), c(-) < c(- )

and

(3.10) f y2 [c(y) - c(o)j dy <

then ao(A ) is finite for every p > 0.

Alternative criteria for the finiteness of o0 (A ) can be derived

by constructing Sturm majorants of A, 0 c2 (_)U2o that are non-oscillatory
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and using Theorems 3.6 and 3.11. Similarly, criteria for o0(A ) to be

infinite can be derived by constructing Sturm minorants that are

oscillatory. Several criteria of this type will be given.

The equation A 4) X0) can be written

(3.11) (p-1(y)O,), + p-'(y)(X c-2(y) - 12)0 O.

In particular, for X - c2 (_)p2 one has

(3.12) (p-1 (y)O,), + p-(y)p2(c2(o_)c- 2 (y) - 1)0 - 0.

The first factor p (y) in (3.12) is unimportant for the oscillation

properties of the equation. Replacing it by PMI gives the majorant

(3.13) ,, + pM p-1(y)U2 (c2(oC)-2(y) _ 1)0)_ 0.

Each non-oscillatory Sturm majorant of (3.13) gives a criterion for the

finiteness of o0(A,). Since solutions of (3.13) are non-oscillatory on

any interval (- ,y0 ) when c(-o) < c(--), it is enough to construct

majorants of (3.13) on intervals (y0,oo). An obvious non-oscillatory

majorant for (3.13) is 4" = 0. Thus c0(A.) is finite for every V > 0 if

there is a y0 such that c2(o)c- (y) - 1 < 0 for all y > y0 ; that is,

(3.14) c(y) > c(-) for y > y0.

This means the graph of c = c(y) lies above or on the limit line c - c(-)

in a neighborhood of y = =. Weaker hypotheses that include this case

can be derived by comparing (3.13) with

(3.15) 0" + a y- = 0

which is oscillatory on (y0,-o) if a > 1/4 and non-oscillatory if a < 1/4.
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Oscillation theorems based on (3.15) were first given by A. Kneser [9];

see [3, p. 1463]. Comparison of (3.12) with (3.15) gives

Theorem 3.14. if c(-) < c(-o) and

(3.16) lim sup y2(c-2 (y) - c-2 (_)) < 0

then o0(A ) is finite for all p > 0. Conversely, if

(3.17) lim inf y2(C- 2(y) - J 2c- )) > 0

then there exists a i. > 0 such that c0 (A P) is infinite for every w >ia.

Note that the criterion (3.16) includes (3.14) as a special case.

Note also that sufficient conditions for (3.16) or (3.17) to hold are the

existence of constants Y0 , K and E > 0 such that

(3.18) c(y) > c(-) - K y-2-E for y > yo

or

(3.19) c(y) < c(-) - K y-2 for y yo,

respectively. In particular, ao0 (A.) is finite for all W > 0 if c(y)

approaches c(-) from below sufficiently rapidly.

Criteria that Guarantee 0o(A ) # . Such criteria may be derived

by constructing Sturm minorants for A - c2 (_)p2o whose solutions have

zeros. If the minorant has solutions with infinitely many zeros then

ao(AP) is infinite. If the minorant has a solution with finitely many

zeros then it can be shown that 3 (y,P,c
2(_)U2 ) has at least as many

zeros and one may use the following refinement of Theorem 3.11.

Theorem 3.15. If A P - c2 (c)i2O has a solution having a finite

number k of zeros on R then the part of a(A ) below c2(_)p2 is finite and

has at least k - 1 and at most k + 2 points.
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To apply the method in cases where O0 (A,) is finite consider

first the case Q(y) - const. so that (3.12) becomes

(3.20) " + W2 (c(-)c- 2(y) - l)0 = 0

Note that c2(ao)c-2 (y) - 1> C2(_)c 2 (y) - 1 for all y E R if and only if0

(3.21) c(y) < c 0 (Y) for all y E R.

If co(y) can be chosen in such a way that

(3.22) V" + 2(c()C2 - ) 0

has a solution on R with k zeros then ao(A ) will have at least k - 1

points by Theorem 3.15. In this way one can prove

Theorem 3.16. Let Q(y) = const. for all y E R and assume that

there is a constant co > cm and an interval I - [a,b] with b > a such

that

(3.23) c(y) < co < c(-) < c(-oo) for all y E I.

Then U0(A ) # p for all sufficiently large i. In fact, N(ld) - o when

Theorem 3.16 can be proved by comparing c(y) with a suitable

piece-wise constant function c0 (y) that satisfies (3.21). An analogue

of Theorem 3.16 can be proved in the general case where p(y) # co"rt. by

making the change of variable y - n in (3.12), where

(3.24) ) J Q(y') dy'.
To

The details, which are elementary but lengthy, are omitted.
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This completes the formulation of the results of §3 and the

proofs will now be given. Note that Lemma 3.1 is an immediate conse-

quence of Theorem 2.1 which implies that for X > c2 (_')p2 the equation

A = Xp has no solutions in X(R).

Proof of Lemma 3.2. The resolvent of A is an integral operator

in JC(R) [3, XIII.31

(3.25) (A - f(y) = G P(y,y', ) f(y') c-2(y') p-'(y') dy'.

G (y,y', ), the Green's function of A , is known to have the form

[3, p. 13291

(3.26) G (y,y', ) = [{co)-y-Y
o(Y) -o(',Y > Y'

where 00, and 0_, are non-trivial solutions of A ¢ = that are in

L2 (0,-) and L 2 (-,0), respectively. Thus for L E L(c(o)p) C L(c(--)p),

0.- 0 2 , _ *1 and one has

-1 ~P(y~~,~ c2(y'i,), y Y"
(3.27) G~jY''') = [¢203 -  3

2(, ,) 3(Y 'C,), Y " '

It follows from Corollary 2.3 that G (y,y',C) is meromorphic in

L(c(-)ii) with poles at the zeros of

(3.28) F(j., ) = [ 43('1I, )].

As remarked in §1, these are precisely the eigenvalues of A that are

less than c2 (oo)p 2 . Their only possible limit point is c2 (_)p2 since

"1
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F(w,C) is analytic in L(c(-)p) by Corollary 2.3. These results imply the

two statements of Lemma 3.2.

Proof of Lemma 3.3. This follows from Theorem 2.1 which implies

that A, p = X always has at least one solution that is not in X(R).

Proof of Theorem 3.4. It was remarked above that a (A ) C a (A )

C [c2 (-)p2 ,-). Hence to prove (3.5) it is enough to show that

(c
2
(_)p

2
,_) C a c(A ). This may be done by constructing a characteristic

sequence for each X E (c2() 2 ,c); i.e., a bounded sequence {n(y)} in

K(R) such that each 0n E D(A ) and (A - A)on - 0 in x(R) but { n} has

no convergent subsequences. Indeed, a suitable sequence has the form

n(y) =%n(Y) 3(y,P,X) where n E D(A 0), n(y) : 1 for lyl < n,

supp c [-n-l,n+l] and n(y) and (P-1(y) (y))' are bounded for all y

and n. Such a sequence {En } can be constructed but the details are

lengthy. They will not be given here since the inclusion (c2(o)12, )

C a c(A) is proved in §5.

Proof of Corollary 3.5. For A # c 2
(_)1

2 every solution of

A P = X0 is a linear combination of 4 1(y,p,X) and 02 (y,V,X) (Corollary

2.7). It follows from Theorem 2.1 that every real solution with

> c2 (_)p2 has infinitely many zeros in any interval (y0 ,-). On the

other hand for A < c2
(_)p

2 Theorem 2.1 implies that every real solution

of A X 0p is either exponentially large or exponentially small for

y - ±=. In every case (y) has constant sign outside of some interval

[-y0,y0] and hence can have only finitely many zeros.

Proof of Theorem 3.6. Results equivalent to Theorem 3.6 are

proved in [6, Ch. XI] under the additional hypothesis that the P. and Q.

are continuous. The same method will be shown to be applicable under

the hypotheses of Theorem 3.6. The method is to study the phase
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plane curves

(3.29) ( (,) (P-'(y)O!(y),p.(y)), y e I, j 1,2,

defined by the solutions 0.(y) and to transform to polar coordinates

(Prufer transformation). Thus (3.29) can be written

(3.30) ( (,r) i (rj(y) cos 61(y),r (y) sin 6j(y)), y E I, j = 1,2.

Moreover, the curves (3.29) cannot pass through the origin because

(y) 1 0. Thus r. (y) > 0 and e. (y) is uniquely defined by continuity

and its value at the point y, E I. Finally, 0. E AC() and (3.6)

implies that . is a solution of the first order equation

(3.31) 0'(y) = P(y) cos 2
6.(y) + Q.(y) sin2 e0(y), y E I.

To prove the first statement of Theorem 3.6 note that one can

assume without loss of generality that 1 (y) > 0 for y, < y < Y2 and

02 (yl) > 0. Thus e.(y) (j = 1,2) may be defined as the unique solutions

of (3.31) such that e1 (yl) = 0 and 0 < 6 2 (yi) < 7r
" It follows that

0 < 6 1 (y) < it for y, < y < y 2 and 61 (y2) ffi . It must be shown that

2 (y) has a zero in [yl,y 2 )" If 02 (yl) = 0 there is nothing to prove.

If 2 (y) > 0 then 0 < 02 (y) < iT and it follows from (3.31) and (3.7)

that 62(y) > e1 (y) for all y > y, (see [6, p. 335]). In particular,

62 (y2) > 61 (y2 ) - iT whence by continuity 2(y0) = T and therefore

02 (y0 ) = 0 for some y0 E (Yiy 2 )"

To prove the second statement of Theorem 3.6 it is only necessary

to remark that if Q1(y) < Q2 (y) or PI(y) < P2 (y) and Q2 (y) # 0 on a

subset of (y1 ,y 2 ) having positive measure then 02 (y2 ) > 7 even if

62 (y l ) = 0; see [6, p. 335]. This completes the proof.
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Proof of Corollary 3.7. The function 0 3(y,PX) is a solution of

equation (3.11). Thus if 1 (y) = 3 (y,i',X), j - 1,2, then

(3.32) (p- 1 (y)'), + p- (y)(c C-2(y) p i2)0j _ 0, j = 1,2.

These equations have the form (3.6) with P. (y) = p(y) and Q. (y)

p (y) (L c 2 (y) _ p2). Hence P 1 (y) = P2 (y) and Q1 (y) < Q2 (y) for all

y E R, since p(y) and c(y) are always positive, and the second part of

Theorem 3.6 is applicable. It follows that if y I < y 2 
< ".. < Yk are

the zeros of 1 (y) = C 3(y,",X) then p2 (y) = 0 3(yii,X2) has k - 1 zeros

in the interval . Hence it will be enough to show that

also has a zero in (--,y,]. To verify this apply Lagrange's formula

(2.23) to 4,(y) and p2(y) in (--,yl]. This is possible because ,(y)

and 02 (y) are exponentially small at y= -w. The result can be written

(X2 - X1) 01 (y) 02 (y) J
2 (y) p-'(y) dy

-2
(3.33) [01 A 42 - 2 A 0} c p dy

= 2 (y) {P'-(Y) (Y

since 1(Y1 ) = 0 and , and 02 vanish at y = -. Now suppose that 2(y)

has no zero in (--,yl]. Then 0 2 (y,) > 0 because 0 2 (y) > 0 near y =

by Theorem 2.1. Moreover, 01 (y) 
> 0 for -- < y < y, and

-I (y) t'(yl) < 0 because y1 is the first zero of 0,. Thus the right

hand side of (3.33) is negative. But the left hand side is clearly

positive. This contradiction completes the proof.
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Proof of Theorem 3.8. For regular Sturm-Liouville operators

AO = -4" + q(y)o on finite intervals the oscillation theorem goes back

to Sturm. For singular operators in L 2 (0,) such that q(y) +cwhen

y - +- it was first proved by H. Weyl. More recently the result was

proved by B. M. Levitan and I. S. Sargsjan [11, p. 201] under more

general conditions on Q(y) that guarantee that the solutions of AO - XO

are non-oscillatory on 0 < y < - for all X E R (and hence 0(A) is

discrete). It will be shown here that the method of Levitan and Sargsjan

is applicable to the case of Theorem 3.8.

The method of [i] is to regard the Sturm-Liouville problem for

A on 0 < y < - as a limit of regular problems for A on 0 < y < b < and

to study the behavior of the eigenvalues and eigenfunctions as b

Here the operator A in JC(R) will be regarded as a limit of the regular

operator in C(a,b) = L2(a,b;c- 2(y) p- (y) dy), -- < a < b < -, defined

by A, and the boundary conditions 0(a) = 0(b) = 0. The corresponding

operator in JC(a,b) will be denoted by A ,a,b . The limit a - will be

studied first.

The operator A is more general than the operator studied in [11].

However, examination of the proofs in [11] reveals that nothing is used

but the Sturm comparison theorem, the convergence of the eigenvalues

when b - 0, the continuity and asymptotic properties of the solution

O(y,X) of AO - X4 that satisfies the boundary condition at y - 0 and the

non-oscillatory character of AO - X0 in a -interval containing the

point spectrum. All of these properties have been established for A

The solution of A., X0 that satisfies O(b) - 0, p (b) 0'(b)

- 1 will be denoted by Ob(y,A). For A # c2(__)p Ob(y,A) is a linear

combination of 0 3 (y,p,A) and 04 (y,U,X) and hence has the regularity

-7
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properties of Corollaries 2.2 and 2.3. The eigenvalues of A are

the roots of the equation b(a,X) = 0. They will be denoted by

X k,a, b k = 1,2,..., with the convention that Xk,a,b < Xk+i,a,b" The

corresponding eigenfunctions k,a,b(y) - Ob(Y'Xk,a,b) have precisely

k - 1 zeros by the classical oscillation theorem. For tha ci of

operators considered here this result can be proved by the method of

(k)[11, p. 171. The zeros of k,a,b(y) will be denoted by yj,a,b'

< j < k - 1.

The operator in 3C(--,b) defined by A and the boundary condition

O(b) = 0 will be denoted by A The methods used to study o(A ) above

can be used to show that a(A9b) n [cp c (C)1 (A)  [b )) is

finite or countably infinite with unique limit point c2(-)W 2. The

number of eigenvalues in [c2)2 I,c2 (__)U 2) will be denoted by N(p,b) - 1

(< + ) in analogy with the notation for A, and the eigenvalues will be

denoted by Xk,b (Xk,b < Xk+lb). The eigenfunctions for Ab are

k,b(y) = Ob(y'k,b ) .

The proof of the oscillation theorem for A b by the method of

[11] will now be outlined. First,

(3.34) lim Xk,a,b M =Xk,b for 1 < k < N(p,b).

This follows, for example, from the convergence of the Green's functions.

It follows that

(3.35) li 'kaby - for -- < y < b,

uniformly on bounded subsets of (--,b]. The proof of the oscillation

theorem given in [i] is based on the following three lemmas.
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Lemma 3.17. For each k = l,2,.-.,N(P,b) - 1 and each fixed

b E R one has

(3.36) sup (k) < .a~b Yk-i,a,b

Lemma 3.18. For each k = 1,2,-',N(pb) - 1, each

j - 1,2,-,k - 1 and each fixed b E R one has

(k) (k)(3.37) inf [Yj+l b - Yjab) 0

a<b

Lemma 3.19. For each k l l,2,.-,N(p,b) - 1 and each fixed

b E R one has

(3.38) inf (X - a > 0.

a<b k+i,a,b k,a,b

The proofs of these lemmas and the oscillation theorem for A ,b

are the same as those given in [11, pp. 202-4] and will not be repeated

here.

The proof of Theorem 3.8 may now be completed by regarding A as
11

a limit of A ,b for b and repeating the argument given above. The

solution of A X A4 that satisfies the condition of square integrability

at y - -= is 03(y,p,X) and is non-oscillatory for all y E R when

< c 2 ()4 2 (Corollary 3.5). The remainder of the proof follows as

before.

Proof of Corollary 3.9. Theorem 3.8 implies that Xk+l 0) E I

for k - 0,l,2,***,N(p)-2. Moreover, a continuity argument based on

Corollary 2.2 shows that the intervals Ik have the form Ik = (ak,ak+l]

where a, < a, < -.. < a N(p)_ (see (3, p. 1475]). Thus to prove (3.9)

it will suffice to prove that



58

(3.39) F(j,ak) - [$2(, ,ak) (,,ak)] - 0

for k - l,2,',N(p) - 1. This proof will be based on the following two

lemmas.

Lemma 3.20. Let X0 < c
2 (-'_)p2 and let Yo be a zero of

Then to each sufficiently small E > 0 there corresponds a

> 0 such that for IX - X01 < 6 the function 03 (y,P,X) has exactly one

zero in the interval ly - Y01 < E.

This result follows from Corollary 2.2 and the fact that

p-'(y) '(y) cannot vanish at a zero of a non-trivial solution of

AP = X0. For a proof see (11, p. 161.

For X 6 Ik let y1(X) < y2(X) < ... < yk(X) denote the zeros of

03 (ypX). Then each yj(A) is uniquely defined for X E Likj Ik and

one has

Lemma 3.21. Each of the functions y (X) is continuous and

strictly monotone increasing.

The continuity follows immediately from Lemma 3.20. The strict

monotonicity follows from the proof of Corollary 3.7.

Proof of Corollary 3.9 (concluded). (3.39) will be proved by

contradiction. Assume that F(p,ak) # 0 and note that for X < c
2C(_)U 2

one has

(3.40) 03(y,UL) - c(IX) 1(y,IX) + c'(0,X) 02(y,1X),

by Corollary 2.7. Moreover, Theorem 2.1 implies that

(3.41) c(.,X) - p(-)[0 20 3J/2iq+(Ij,X) - p(-) F(w,X)/2iq+(ji,A).

Thus c(U,ak) 0 0 and by continuity (Corollary 2.2) there is an interval
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, L- aki < 6 in which c(P,X) # 0. It follows from (3.40) and the

uniformity of the asymptotic estimates of Theorem 2.1 (Corollary 2.4)

that there is an M > 0 such that

(3.42) 10 3(yIX)l > 1 for all y > M and IX - aki < 6.

Note that Lemma 3.21 implies

(3.43) lim y - yj(a) , j = 1,2,--,k.
X-ak

Now consider yk+ () which is defined for X ", ak . For ak < A < ak + 6

one has yk+l(A) < M by (3.42). It follows that the limit

(3.44) y - im yk+ ()

exists and y > Yk(ak). But 03(y,,ak) 0 by continuity and hence

y = Yk(ak). But this implies that for 6 > 0 small enough and

ak < X < ak + 6 every neighborhood ly Yk(ak) l < E contains two zeros

of 0 3 (y,U,) in contradiction to Lemma 3.20. This completes the proof

of (3.9).

The last statement of Corollary 3.9 follows from the proof of

Theorem 3.8. Indeed, if N(p) < o and N(P) < N(V,b) then N(p) < N(p,b) - 1

and X is defined. In this case
N(j) ,b

(3.45) lim inf X > C2( ) 2

b-Ko N(p) ,b

since otherwise XN(p),b(k) ' X0 < c2 (o)p2 for some subsequence {b(k)},

which would imply that A0 was an additional eigenvalue of A . If

N(P) - N(P,b) < - the same argument can be applied to the operator A

Proof of Corollary 3.10. This follows immediately from

Corollary 3.9.
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Proof of Theorem 3.11. It will suffice to prove the second

statement of the theorem. To this end let h(y,p,X) be the solution of

A X 0X that satisfies (b,v,X) = 0, p-'(b) ;(b,i,X) - 1. Then

Ob(y,PX) and P-1 (y) 0'(y,P,X) are continuous functionsof (y,X) E R2 .

Now assume that A P - c2W'()p 2
o is oscillatory. Then Ob(y, ,C2(_)L2 )

has infinitely many zeros. It follows by the method used to prove

Lemma 3.20 that the number of zeros of 4b (y,p,X) tends to infinity as

-) c2 (o-)u 2 . But then the same is true of 03 (YIPX), by Theorem 3.6,

and it follows from Corollary 3.10 that a 0(A P ) is infinite. To prove

the converse note that if o0 (A.) is infinite then Theorem 3.6, applied

to the kth eigenfunction and any solution of A = c2 (_)V 2 0 implies

that has k - 2 zeros. Since k is arbitrary it follows that

A P - c 2 (_)U 2 0 is oscillatory.

Proof of Corollary 3.12. This follows immediately from Theorem

3.11. The hypothesis c(-) < c(--) is needed only to ensure that

3(y'C c 2 ( _°) p 2 ) is defined.

Proof of Theorem 3.13. This follows immediately from Corollary

3.12 and Theorem 2.6.

Proof of Theorem 3.14. To prove the first half of the theorem

it will be shown that condition (3.16) implies the existence of a non-

oscillatory majorant for equation (3.13) for every 1 > 0. This implies

that (3.12), i.e., A 4 - c 2 (_)U20, is non-oscillatory for every p > 0

and the finiteness of C0 (A4 ) follows from Corollary 3.12.

To construct a majorant for (3.13) note that (3.16) implies that

for every e > 0 there is a y 0 = y0 (e) such that

(3.46) y2(C(( )c-2 (y) - I)+ < £ for all y >y0(),

AL:_
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where cL- Max (c,O). It follows that for every p > 0 there is a

YO " Y0 (W) such that

-M p 1 (y) y 2 C 2 (c ) -) - 1) < 0M P-1 (y) y2 (c 2 (Oo) C-2(y) - l)+

(3.47) ~p- 1 y2(c2(o)c-2 (y) - )+(3.7) P M Pm+

< 1/4p 2 for ally y(.)

Hence for any p > 0 one has

(3.48) PM P- 1 (y) 12(c2(oo)c 2 (y) - 1) < 1/4y2 for all y > y 0 (p).

It follows on comparing (3.13) with (3.15) with a = 1/4 that (3.13) is

non-oscillatory on y0 01) < y < -. It is non-oscillatory on -- < y < y0()

for any P > 0 because c(-) < c(-o-). This proves the first half of

Theorem 3.14.

To prove the second half it will be shown that (3.17) implies

the existence of a po > 0 such that A ff c2 (_)11 2
0 is oscillatory for

every U > o. The result then follows from Theorem 3.11. To this end

note that if £ satisfies

(3.49) 0 < e < lim inf y2C2()c2 (y) - 1)

then there is a yo - yo(e) such that

(3.50) y2 (c2 (o)c-2 (y) - 1) > £ for all y >Yo(E).

j In particular, given any a > 1/4 there is a po > 0 such that

(3.51) 0 < M P- a/p0 < lim inf (c2(o)c-2 -)
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It follows that there is a Y0  Y0(ct) such that

(3.52) y2 (c2(_)C-2 (y) - 1) > PM pmla/.i for all y > yo(a).

This implies that

(3.53) pm pi U2(c2(_oC- 2 (y) _ 1) > a/y2 for all y >y(a).

Hence, comparison of

(3.54) q" + Pm p U2(C 2 (_)C 2 (y) 1)0 0

and (3.15) with a > 1/4 implies that (3.54) is oscillatory. But (3.54)

is a Sturm minorant of (3.12); i.e., A = c2 (_)U20, provided V > pa.

Hence the latter is oscillatory for all P > p0"

Proof of Theorem 3.15. This result is proved in [3, p. 1481] for

Sturm-Liouville operators with smooth coefficients. The proof is based

on the oscillation thecrem (Theorem 3.8), Sturm's comparison theorem and

the continuous dependence of the zeros of solutions of A X = X on X

(Lemma 3.20). Hence it extends immediately to the operator A

.11



§4. Generalized Eigenfunctions of A

The eigenfunctions Ik(yp) corresponding to the point spectrum

of A. were constructed in the preceding section. In this section the

special solutions p. (j = 1,2,3,4) of §2 are used to construct gener-

alized eigenfunctions of A corresponding to the points of the continuous

spectrum. These functions will be used in §5 to construct the spectral

family {H (X)} of A and to prove that Oc(Au) - e(A) f [c2(D)12,oo).

To construct the generalized eigenfunctions p0(y,lA), i+(y,VX)

described in §1 recall that the special solutions (P.y,p,X) are defined

for all real X # c 2
(±_o)1

2 and the pairs 1' 2 and 3' 4 are solution

bases for A, = (Corollary 2.7). It follows that

j = c j30 3 + Cj404,9j = 1,2,
(4.1)

j ffi CjlI + Cj202, j = 3,4.

The coefficients cjk f cjk(P,) can be calculated by means of the

bracket operation

(4.2) [¢j~k(V,%) f [%j(.,i,) ck(.,W,X)]

of Lagrange's formula. Indeed, by forming the brackets of equations

(4.1) with 4', 3' 2 and , in succession and using the asymptotic

forms of Theorem 2.1 one finds

(-2iq_)cj = [ j

(4.3) j = 1,2,

(2iq_)cJ = p(-oo)[ 10 3 ]

63
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(-21q+) c. j P(-) 10
(4.3 cont.) j = 3,4.

(21q+)c ja 2 (-)[4) i ]

In particular, Corollary 2.2 implies that each cjk(PX) is a continuous

function for X c2 (±o)p2 . These relations will be used to determine

the generalized eigenfunctions of A . The notation

A = A(,) A I C2 (--o)1p 2 
< X),

(4.4)

Ao = Ao(p) - I, c 2 (). 2 < X < C2(-)U 2 }

will be used. Note that A r0 only if c(-) < c(-m).

The Spectral Interval A. The generalized eigenfunctions of A

are the bounded solutions of the differential equation A 1 = X . For

X E A, Theorem 2.1 and the relations (4.1) imply that all the solutions

are bounded. It will be shown that the functions

(4.5)

i _(Y,14,A) = a_(4,) @1(y,p,X)

have the asymptotic forms described in §1. The completeness in

IP (A) X(R) of these functions will be proved in §5. The pair (2,03)

which provides an alternative basis, will not be treated explicitly here.

It may be shown to correspond to the second family {0_(y,p,q) I q > 0)

described at the end of §1.

It follows from (4.5), (4.1) and Theorem 2.1 that the asymptotic

behavior of + is given by
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[ 41e iq+y + c4 2 e - iq+y + o(l), y +

( 4 .6 ) 4 + ( y , , ) - a +e
e -l ~ y + ( i) , y - ,

The equivalence of (4.6) and the asymptotic form (1.34) of §1 follows

from

Lemma 4.1. For all p > 0 and X E A the coefficients c 41(1,),

c 4 2 (pA) satisfy

(4.7)- ) c 2 12 = -1
(o) q Ic 4 1 1 + p-'(--) q_.

In particular, c 4 2(p,x) 0 0.

The proofs of Lemma 4.1 and subsequent lemmas are given at the

end of the section.

The asymptotic forms (1.34) and (4.6) coincide if the coefficients

satisfy

(4.8) c+ = a+ c 4 2, c+ T+ = a+, c+ R+ = a+ C4 ,.

In particular, the first relation and (4.3) imply that

(4.9) c+(P,A) = a+(P,X) P(M)[¢ ¢ ](1A,)" 21q+W( ,A)

The normalizing factor a+(U,X) will be calculated in ,§5. The factors

R+(I, ), T (,A) of (1.34) are independent of the normalization. Indeed,

on combining (4.8), (4.9) and (4.3) one finds

(4.10) T+(AA) 2iq +( i (, )
4P
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(4.11) R+(i,%) = - [@P 2](A)

Note that the denominator is not zero by Lemma 4.1 and relations

(4.3).

The asymptotic behavior of _ may be discussed similarly.

Equations (4.5), (4.1) and Theorem 2.1 imply

{ iq+y + o() P y -+00

(4.12) a_(y, ,X) a

eiq -y + e- iq y + o(i), y

and one has

Lemma 4.2. For all p > 0 and A e A the coefficients c13 (j,A),

c 1 (p,X) satisfy

(4.13) p-I (.-o) q_ c131
2  P'.(-) q_ c1 12  , + p- (-) q+.

Comparison of (1.35) and (4.12) gives

(4.14) c_ - a_ c1 3, c_ T_ = a_, cR = a- c14.

Solving these equations for c, T and R and using (4.3) gives

(4.15, c (.,) = a_(,,,X) ( 1(]0X )
" - - 21q_ (p,X)

(4.16) T(iX) = 2iq_(p,X)
P(.-) [ , ](U ,IX) ,

(4.17) R(iX) -

- [ z ,, ] ,,g
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The Spectral Interval Ao.. For X E A0, Theorem 2.1 and the

relations (4.1) imply that the only bounded solutions of A p = are

multiples of Y~y'.X). It will be shown that

(4.18) 4'0(y,Iji,X) =z a,(pi,X) 0p3(yIIX)

has the asymptotic form (1.33). Indeed, (4.18), (4.1) and Theorem 2.1

imply that

C3r ~ iq+y 3 2 e-iq~y + o0) y - .+0

(4.19) iP0(y,ii,A) = a0  , 3  +

e e-!y~1 + o(1)] ,y -P. -00.

The equivalence of (4.19) and (1.33) follows from

Lemma 4.3. For all P > 0and X EAA one has

(4.20) c32(49i,) m c31(ji,x) 0 0.

Comparison of (1.33) and (4.19) gives

(4.21) cO a0 c32' COTO = a0, c0 R0  a0 c31.

Solving for cop To and R.and using (4.3) gives

(4.22) c0 (JI,X) = ao 2iiX) )

(4.23) To0 (p,,X)= i.(,A

(4.24) R0 (ji,X)l [- 2 -P

The denominator (4~#0 by Lema 4.3 and relations (4.3).
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Finally, note that the conservation laws (1.46) hold; i.e.,

(4.25) q, IN+12 + q. IT+1 2 = q+ for all X E A,

(4.26) IR01 = 1 for all X E A0.

In fact, relations (4.25) are equivalent to relations (4.7) and (4.13)

of Lemmas 4.1 and 4.2, as may be seen by combining (4.7), (4.8) and

(4.13), (4.14). Similarly, relation (4.26) follows frotp Lemma 4.3

because (4.21) implies that R o = c 3 1/c 32

Proof of Lemma 4.1. Relation (4.7) can be verified by calculating

[t40] in two ways, using the asymptotic forms of as y - o and y -*

Note that for X E A one has 4 = 03 by the uniqueness theorem (Corollary

2.5) and Theor.i 2.1. Hence, calculating [0y]I at y =-o gives

(4.27) [4] = [4033] = 2i P- (--)q_,

by (2.25). Next, relations (4.1) and Theorem 2.1 give (with the

notation c.c. for complex conjugate)

] = - C.c.

(4.28)

(c 1  + c42 0 2 ){c,, -4¥ + c 2  - c.c.

(c 4 , eiq+y + c4 2 e-iq+y)

X {c41P - 
1 (o) (_iq+e- iq+y)+ +c p-I (o) (iq+e iq+y))} c.c. + o(i)

0-1(o_)(_iq+)(lc~ll2 21~q+y - -2e21q+y_ c22_~ oI

1-21q p- 11c 4112 - 4212}.
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Combining (4.27) and (4.28) gives (4.7).

Proof of Lemma 4.2. (4.13) can be verified by calculating

in two ways, in analogy with the proof of Lemma 4.1. It can also

be derived directly from (4.7) and the relations (4.3).

Proof of Lemma 4.3. Note that for X E A0 the uniqueness theorem

(Corollary 2.5) and Theorem 2.1 imply that 43 is real valued and j=

Hence relations (4.3) imply

(4.29) c3 1 = P(-) [0302]/2iq+ = P(o)[0 301]/2iq+ = c 32 "

Moreover, if c32 = 0 then c31 
= 0 by (4.29) and hence by (4.3) one has

(4.30) [P3 1] = 0.

But this would imply that 0, and 0. are linearly dependent which

contradicts (2.25). Hence c 32 0 0.

*t
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§5. The Spectral Family of AB.

The eigenfunctions and generalized eigenfunctions of §4 are used

in this section to construct the spectral family {HlU (X)} of A P. The

construction if based on the Weyl-Kodaira theory as presented in the

Appendix. Note that the operator A., has the form (A.1) with I = R,

p(y) - p(y), q(y) = p2 p-1(y) and w(y) = c-2(y) p 1 (y). It is clear that

p, q and w satisfy (A.2), (A.3), (A.4) when p(y) and c(y) are Lebesgue

measurable and satisfy (1.3).

It will be convenient to decompose R into the disjoint union

(5.1) R Ad U {c2 (_)11 2} U A0 U {c2(Co)p 2 } U A

if c(-) < c(--) and

(5.2) R = Ad U {c2 (1)12} U A

if c(-) - c(--) where

(5.3) Ad ' Ad(') = (-,c2(_)12),

and A0 and A are defined by (4.4). The spectral measures of the

components of (5.1) and (5.2) will be studied separately.

The Spectral Family in A. The spectral measure R (A) of inter-

vals A - (a,b) C A will be calculated by applying the Weyl-Kodaira

theorem to A in A. The solution pair

(5.4)

4P2 (y,X) =OI(yP,)

71
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will be used to obtain a spectral representation in terms of the gener-

alized eigenfunctions IP_(y,u,L) defined by (4.5). The normalizing

factors a+(p,A) will be chosen after the matrix measure for (1p,'P 2 ) has

been determined. Note that the pair (Pi 2) satisfies the hypotheses of

the Weyl-Kodaira theorem. Indeed, (A.11) follows from Corollary 2.2 and

(A.12) from Lemma 4.1.

The Weyl-Kodaira theorem implies that

(5.5) (A)fn2 = f. (X) fk(X) mjk(dX), A C A,

for all f E X(R) where (mjk(A)) is the spectral measure on A associated

with the basis (5.4) and

(5.6) f.(A) lim J ij(y,X) f(y) w(y) dy,
M -M

the integrals converging in L2 (A,m). Thus to complete the determination

of 11 (A) for A C A it is only necessary to calculate {mjk(A)}. Now

fl1 (A) can be calculated from the resolvent

(5.7) R (1) = (A -

by means of Stone's theorem (see, e.g., [16, p. 79]). For A C A the

theorem takes the form

(5.8) 111 (A)fU2 
- lim 2 (f,[R (X+iE) - R (X-ie)]f)dXC 0+ 2lfA 1

because r0() f A - by Lemma 3.1. Moreover, R (C) is an integral

operator in J(R) whose kernel, the Green's function of A,,, can be
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represented by the analytic continuation of the basis (5.4) into the

-plane. This procedure, whose details are presented in the proofs at

the end of the section, leads to

Theorem 5.1. For all f E JC(R) and all A C A the spectral

measure I (A) satisfies

(5.9) II (A)f1 2 " J {A(uk,,) 1 1 2)i2 + A2 (1,X) 1 f2 0,)12 dA

where

(5.10) A (i,X) =

Corollary 5.2. The matrix measure (mjk(8)) for the basis (5.4)

is given by

and m12 (A) m21 (A) - 0 for all A C A.

These results suggest an appropriate choice of the normalization

factors a_(P,X) of (4.5). Note that if instead of the basis (5.4) one

takes (4.5) then (5.9) becomes

(5.12) oil .(A)fl 2 
= f {A2 Ia+ -2 If12 + A2 Ia_Jl 2 If_12 dX

where

I,
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(5.13) f+(,A) - li .H+(y, j,X) f(y) w(y) dy

converge in the space L2 (A,m') corresponding to This suggests

the choice la+1 2 - A2 or

(5.14) a,(p,X) = eiO±(11X) A, (I)

where 8+(p,X) is an arbitrary real valued continuous function. The

matrix measure {mjk} for (t+,1_) is independent of the choice of the

phase factors exp {i 0+(P,X)} and one could take +(p,X) - 0. However,

it will be more convenient to choose e+(p,X) in §8 in a way that simpli-

fies the asymptotic form of the normal mode functions +(y,p,q).

Theorem 5.1 and the above remarks imply

Corollary 5.3. If the basis (i+(y,u,X), _(y,X)) is

normalized by (5.14) then for all A C A one has

(5.15) f + d)

and the matrix measure (m!k(A)) for (4+,J) is given by

(5.16) m(A) - m 2 (A) - IA

and m'2 (A) = m21 (A) = 0 where JAI is the Lebesgue measure of A.

The Spectral Family in A0 . The spectral measure of intervals

A C A0 will be calculated by applying the Weyl-Kodaira theorem to A,

A0 and the solution pair
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IP 1 (y,) (y 1=X
(5.17)

2 (yA) = 'y, 11,A)

The function 03 is chosen to obtain a representation in terms of the

generalized eigenfunction ip0 defined by (4.18). The second function

could be replaced by any independent solution of A U - X0. The pair

(5.17) satisfies (A.11) by Corollary 2.2 and (A.13) by Lemma 4.3.

Calculation of the spectral measure in A0 by the method described

above leads to

Theorem 5.4. For all f 5 JC(R) and all A C A0 one has

(5.18) ol(A)fp 2  2 A° ( 1,X) if (X) 2 dX

where

(5.19) A0(J,X) =

Hence the matrix measure (mjk(A)) associated with the basis (5.17) is

given by

(5.20) i A) A 2 (ljX)dX

and m1 2 (A) = m2 1 (A) = m22 (A) - 0 for all A C A0.

On replacing (5.17) by the basis (p0(y,p,X), q1(YiX)) and

defining the normalizing factor by
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(5.21) a.0(,X) = ei 'oN,) Ao(P,X)

where eo(V,X) is an arbitrary real valued continuous function one

obtains

Corollary 5.5. If a0 (p,X) is defined by (5.21) then for all

A C A. one has

(5.22) oi (A)fl2 " J ii((p,X)1 2 dX

where

(5.23) f0(iX) lr iP0(y,p,X) f(y) w(y) dy.
M--M

In particular, the matrix measure (mvk(A)) for the pair (Wpo,c,) is

given 
by

(5.24) m> (A) - JAI

and m'(A) = m 1l(A) - m 2 (A) = 0 for all A C A0, and the integral in

(5.23) converges in L2 (A0).

The Spectral Family in A The portion of (A ) in Ad was shown

in §3 to be the set of eigenvalues {Xk(p) 1 1 < k < N(p)}. Moreover,

each Xk(P) is a simple eigenvalue with normalized eigenfunction k(y,1I)

defined by (3.4), and corresponding orthogonal projection P k defined by

(5.25) P k f(y) = (k( ' 'p ) 'f) k(y  )
,

Hence, recalling that by convention n(X) = M I(X.+ 0), one has

1.1 IJ
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(5.26) IT ) f(y) = k(YU), X E Ad.
Xk(I)I<

The notation in (5.26) denotes a summation over all indices k such that

Xk("') < X. The sum in (5.26) is finite for all X E Ad.

The Spectral Measure of the Points c2 (oo)l 2 and c 2
(-_)W

2
. When

c(-) < c(--) one always has HI ({c2 (-_)p2}) - 0 because in this case the

special solutions 1 (Y,i),q 2 (Y,1i,X) are defined for X = c2 (-_)p 2 and

Theorem 2.1 implies that A 0 = c2 (-o)1 20 has no solutions in X(R). The

point X = c2 (_)p2 may be an eigenvalue of A . In each case this

question must be decided by determining the behavior of solutions of

A p = c2 (oo)4 2  for y _+o. Theorem 2.6 gives simple sufficient condi-

tions for H P({c 2 (_)p2 }) = 0. For simplicity, it will be assumed in the

remainder of the report that c2 (_)li 2  
a 0 (A.). In cases where c 2 (,o)ij 2

is an eigenvalue a corresponding term must be added to the eigenfunction

expansion.

The Eigenfunction Expansion for A.. Combining the representa-

tions of IT obtained above, one finds the representation

11l (X)fiI2  -- H(X X k(p)) lik(1)1 2

k=l

(5.27) + J H(X - ') ji 0 (1,A')J2 dX'

+ TAO -( X')(I?~1,'I + If (14X'v)1 2)

where H(X) 1 forX > 0, H(X) 0 forX < 0,
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(5.28) k(P) = Y f(Y) C- 2 (Y) P-(y) dy, 1 < k < N(JI),
fR

(5.29) fi(ii,X) L2 (Ao)-lim o(Y,IX) f(y) c- 2 (y) p- (y) dy,
M- °  

-M

and

M -2 -1(5.30) f+(P,X) = L2(A)-lim , +(y,11,A) f(y) c-2(y) P (y) dy.
M-- -M

In particular, on making X - - one obtains the Parseval relation for A,:

(5.31) "?f2 = Ifk)2+ o0(l)IdA+ ((+L, i )1 2 + f (.uX)12 )dX.
k=l Ao A

Thus the correspondence

(5.32) f-i + f = (fP(j,.) , (i',.) (, .,f 1 1( ) ,f 2 (i),.

defines an isometric mapping T of JC(R) into the direct sum space

(5.33) L2(A) + L2 (A) + L2 (A0 ) + C

and one has

Theorem 5.6. P is a unitary operator from X(R) to the space

(5.33).

This result will be shown to follow from the Weyl-Kodaira theorem

and the corresponding properties of the partially isometric operators
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q + : X(R) --L 2(A),

(5.34)

YP O J(R) -" L2 (A0 ), "1

Yk :1(R) - C, 1 < k < N(1)

defined by

(5.35)
Y0 f  f f0(1,-)

Ypk f  fk(1(), 1 < k < N(P).

In fact, the Weyl-Kodaira theorem implies

Theorem 5.7. The operators (5.34) are partially isometric and

if orthogonal projections in JC(R) are defined by

* _,P *
(5.36) P = J1 Pk T pk TPk 0 < k < N(p),

then

P + P =1 (A),
I (5.37)

P o = 11 1(AO),

N(11)-
N Pk = 1 (A d)

k=l ~j

Moreover,

T+ Y_ = 1 in L2 (A(p) ),

(5.38)

T PTP' l in L2(A0()),

Tk '1k = I in C, 1 < k < N(p).

' ~ ~ ~ ~ ~ ~ ~ ~~p .... p....7..... -k-.-- " :: ,' L, -- .



80

Corollary 5.8. The inverse isometries T T 0 < k <w±' k'

are given by

(T*_f+)(y) = ,(R)-lim J+(y,p,X) f+(X)dX,
(5.39)

(TJ* fo)(y) = C(R)-lim C2o(Y' 'A) fo(,)dA,

PO60 c (_)U22+6

(T*,.fk)(y) fk k (y ) ' 1 < k < N(U).

The spectral property of the unitary operator TL is described by

Corollary 5.9. For every f E D(A ) one has

(5.40) T 1 A f = (Xf+(1 ,), x_( ,),XX 0 ( P, X) ( l1 ( ),f..).

This completes the formulation of the results of §5 and the

proofs will now be given.

Proof of Theorem 5.1. The integral representation of the

resolvent will be used. Thus, as in the proof of Theorem 3.2,

(5.41) R ) f (y) = J g (y,y', ) f(y') w(y') dy', (A,

where w(y) = -2(y) p-'(y), and the Green's function G has the form

(5.42) G (y,y',t;) = [(, )po(, )]-1po(y<, ) oo(Y>,")

where y< = y<(y,y') = Min (y,y'), y> = y>(y,y') = Max (y,y') and

are non-trivial solutions of A f = such that

E L2 (-oo,0) and ¢oo(',i) E L2 (0,-). To identify these solutions note

that by (2.4)
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Imq(±,) > 0 for E E R+(c(--)I)
in t

(5.43)

Im q±(i, ) < 0 for EE R-(c(-o)I)
in t

and

. y q + - ±iyq± ;y Im qi±iyRe q±
(5.44) e -=e__

It follows from Theorem 2.1 that

cpo(Y,() = ,

(5.45) for E R+(c(-) i n t

_.(Y, 4) = 4(Y, , C)

and

Coo(, 4) = Ca(Y, P, 1 mnt
(5.46) for C e R-(c(--))i)

Now the functions appearing in (5.45) and (5.46) have continuous exten-

sions to R+(c(-°)P) and R-(c(-)I), respectively, by Corollary 2.2.

Indeed, (5.42), (5.45), (5.46) and Corollary 2.2 imply

Lemma 5.10. For all X E A one has

(5.47) G(y,y',A+iO) = [ ]( ) (y<,,) 1(y>,PA),

(5.48) G (y,y',X-iO) = [02 3]() 3 (y<' 'A) 02 (y>,PX),

and the limits are uniform on compact subsets of R x R x A.

To prove Theorem 5.1 it is clearly sufficient to verify (5.9)

for the functions f of a dense subset of 'K(R). It will be convenient

IV
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to use the subset

(5.49) 3 com(R) = ,((R) C) {f j supp f is compact}.

Note that for f e ,com (R) the integrand in Stone's formula (5.8) can

be written

1 (f' [R (X+i) - R (X-i)]f)

(5.50)

-1 [ {%G(y,y',;+ie) - G (y,y',X-ie)} f(y) f(y') w(y) w(y') dydy'
2FT R fR

Lemma 5.10 implies that for all f E Kcom(R) this expression tends to

a limit

(5.51) (f,H (M)f) = f f HP(y,y',X) f(y) f(y') w(y) w(y') dydy',
R R

uniformly on compact subsets A C A, where

(5.52) H (y,y',A) = {G (y,y',A+iO) - G (y,y',A-i0)}.

It follows that

(5.53) Nfl (A)f112  - (f,H (X)f) dX

for all f (E x(Om(R). The proof of Theorem 5.1 will be completed by

calculating H P(y,y' ,A). Note that the well-known property _(( )* R ( )

implies that G (y',y, ) - G (y,y', ) and hence

a 
E f
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(5.54) G (y,y',X-iO) = (y',y,X+iO).

Equations (5.52) and (5.54) imply that H (y,y',X) is Hermitian symmetric:

(5.55) H (y',y,X) = H (y,y',A).

Hence, it will be enough to calculate H (y,y',X) for y < y'.

Calculation of H (y,y',X). Definition (2.4) of q(pC) implies

that

(5.56) q_ (j, ) = -q'(,E) for E E R(c(-o-)p).

It follows from Theorem 2.1 and Corollary 2.5 that

(YP,) T2 2(Y,

(5.57) for E R+(c(-)Ii)

and

$ ¢2 (y,19C) 
=  J(Y,,7)

(5.58) for eR-(c(-)).

03(y4I, = 'Y')7

It follows that

(5.59)

= c21 (,)L) O1(y' X + c2,(PA) 1(y',IAX)

where

(5.60) c21 = [¢2¢4]I[¢,¢4] , c " =
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Similarly

(5.61) 2 (y',jA) f 1 (y',iA)

and

(5.62) 0 3 (y,',) f c 3 1 (x,) 01 (y,,x) + c 3 4 (i,x) ,(y,ji,X)

where

(5 .6 3 ) 3 [1] [ , [ 0 30 4] / 0 1/ []C 34

Combining these relations and Lemma 5.10, one finds for A E A, y < y'

(y',A+iO) = [0 1 4(y,,X) 0 1(y',.,X)

(5.64)

= [01 ]-'{ 2 1 0(yjIA) 0 1 (y',,X) + c2 4 04(yvIA) 04 (y',XA)}

and

-1
G p(y,y',X-i0) = [0203] 03(YPX) 02(Y',H, )

(5.65)

- [P 2 (3]-{c3 1  1(y, IA) 01 (Y',P,) + c34 04(Y~ ,X) 01(Y',,A)}.

Combining (5.52), (5.64) and (5.65) gives

p[ (yy]X) - 0 4(y,PIX) ((y,2,03) ¢] P(y,jA) 4 1 (y,,,)

(5.66)

+ [[€ - [ j4 (Y' I X)

To calculate the coefficients in (5.66) recall that 01(Yp, (),

0 3 (y,IP,) - 0 4 (y,li,X) for A C A. It follows from (5.60), (5.63) and
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(2.25) that

(5.67) C24 -[ b4I2 [21pI 2 4= 2ri A+,

(5.68) C32ip I (-)q- 2( 5 .6 8) ([ 02 ¢ 3] 71[ I 4] l2  I [[ 0 1 4 ] 12  -- 2 r i A -

(5.69) C21 - C34. 0.

Thus (5.66) can be written

H1(y,y',X) = A+ 04(y,1,)) 4(y',X) + A2 - 1(y,i,X) q1 (y', ,A)

(5.70)

= A+ 1(y,A) 41 (y',X) + A
2 

1P2 (yA) i 2 (y',A).

This was proved for y < y'. However, both sides of (5.70) are Hermitian

symmetric and it therefore holds for all (y,y') E R 2 . Multiplying

(5.70) by f(y) f(y') w(y) w(y') and integrating over R2 gives

(5.71) (f,H (A)f) = A jf1(A)j
2 + A 2 1f2(A)1

2

and combining (5.53) and (5.71) gives (5.9). This completes the proof

of Theorem 5.1.

Proof of Corollary 5.2. It follows from (5.5) and (5.9) that

(f, I (A)g) = J fj(X) ^9(X) mjk(dA)

(5.72)

= J{A2 f(X) () + A_ 2 (l) ^,(X)} dX

for all f,g E X(R). Moreover, the Weyl-Kodaira theorem implies that
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= f and = can be arbitrary vectors in L,(A,m). Now

all vectors f with bounded Borel functions as components are in L2 (A,m).

Thus the first of equations (5.11) can be obtained from (5.72) by taking

i g = A  the characteristic function of A, and f. f 92

remaining equations of Corollary 5.2 are obtained similarly.

Proof of Theorem 5.4. The proof follows that of Theorem 5.1.

Equations (5.41), (5.42) for the resolvent are still valid. However,

instead of (5.43) one has

Im q+(p, ) > 0 for E R+(c( ))int,

(5.73)

Im q+(P,4) < 0 for e R(c())in,

Im q_(P,4) < 0 for E R(c(-)p) n L(c(--)U).

Thus by Theorem 2.1

(5.74) for R I g+(c(_)o) I nt n L(c(--)p),

S¢.(Y, ) =3(YPC)

and

(5.75) for R-(c(-oh))nt r L(c

0_-(Y';) 03 (y,),)

Hence Corollary 2.2 implies

Lemma 5.11. For all X E A. and y y' one has

(5.76) GP(y,y',X+iO) = [01~3]- 4 3 (y,JX) 1 (y',XX),

(5.77) G (y,Y',X-iO) = [ 2#a] - 4 3 (YIA) 0 2 (y'X,),
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and the limits are uniform on compact subsets of R x R x A0.

Proceeding to the calculation of H (y,y',X) one has

,:.,(,)= -q'C',) r
(5.78) for c E R(c(-)Ii) n L(c(-)i)

q'( ,- ) = q'(, j

whence

(5.79) 4(Yi, ) = 2(Yi, ) for C E (oo)I) f L~c(- )i)

and

(5.80) 03(y,.,) = 0 3 (y,P) for C e R(c(-)p) n L(c(-)Ii).

It follows that

I (5.81)

(8c2 1 (",X) 01 (y',XA) + c23 (1i,) 3(y4,,X)

where

(5.82) c21 =[020]/[0,03] and c23 = [02]/[ 3M4].

These relations and Lemma 5.11 imply that for X E A0 and y < y',

G (y, y',A+iO)

(5.83)

- [~1~'{ n {21 43(YPX) 01 (Y','A) + c2 3 3 (y,i,X) 3(y'",jA)}

and

(5.84) G l(y,y',A-iO) - [ 03 (y,i,)') (y',jX).

[ , I
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Hence

%(y' , X)

(5.85)

From the relations 01 (Y',,X) = 2 (Y',X), 3(YiP,) = (Y,1,%),

together with (5.82) and (2.25) it follows that

"C23 = -[1{0212 2i-t (q+ 2T i A2
(5.86) [¢C1]3 [ [ ] 2[( )3 = 2ri

and

(5.87) C21 [ 1 = 0.3] [0.

Thus (5.85) can be written

(5.88) H (y,y',X) = AD 03(y,IUX) 3(Y',WIX) = A0 Di(yX) i(Y',A)

for y < y' and hence for all (y,y') E R2 . It follows by integration that

for all f E 3(com(R) one has

(5.89) (f,H ()f) - AD I 0 (), X 0 .

Combining (5.89) and (5.53) gives (5.18). Finally, (5.18) implies

(5.20) by the argument used to prove Corollary 5.2. This completes the

proof of Theorem 5.4.
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Proof of Theorem 5.6. Y is isometric by (5.31), (5.32). Hence

to prove that T is unitary it is only necessary to prove that it is
1'

surjective. But this is an immediate consequence of Theorem 5.7,

equations (5.38). The latter are implied by the Weyl-Kodaira theorem.

Proof of Theorem 5.7 and Corollaries 5.8 and 5.9. These results

are direct consequences of the Weyl-Kodaira theorem.

J
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§6. The Dispersion Relations for the Guided Modes.

The eigenvalues of A determine the relation between the wave

number I~l and frequency w JA(I PT), or dispersion relation, for the

guided mode functions Pk(x,y,p). The functions Xk( (p) also appear in the

definition (3.4) of ,Jy,p). The purpose of this section is to provide

the information concerning the 1-dependence of Xk( (P) and lk(y,) that is

needed for the spectral analysis of A in §§7-8.

The domain of definition of the function Xk(M) is the set

(6.1) 0k = I N(p) > k + 1}, k = 1,2,...

Note that 0k is not empty if and only if 1 < k < No where

(6.2) N o = sup N(i) < +=.
11>0

Clearly, if No < +- then N. - 1 is the maximum number of eigenvalues of

A for p > 0. If No - +oo then either a0 (A.,) is infinite for some p > 0

or a0 (A) is finite for all P > 0 and N(p) when p . Theorem 3.14

implies that both cases occur. The principal result of this section is

Theorem 6.1. For 1 < k < N o the set Ok is open and Xk  
0 k - R

is an analytic function.

The proof of this result given below is based on analytic per-

turbation theory as developed in [8].

The curves X = Xk(M), P e , can never meet or cross because

each eigenvalue is simple and the corresponding eigenfunction lk(yl)

has exactly k zeros (Theorem 3.8). Thus for 1 < k < No - I one has

91
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(6.3) c2 "11 2 < Ak(P) < A (P) < c2 (_)1j' p E 0
m -k kii k-i-

Moreover, if 0k is unbounded then (6.3) implies

(6.4) c2 < lim inf -2 Xk(P) < lir sup P-2 Ak(p) < c2(_).

In particular, if 0k is unbounded then

(6.5) lim Xk~I)

A related property is given by

Theorem 6.2. For 1 < k < N, the function Ak( P) is strictly

monotone increasing; i.e., for all P,, p2 E 0k one has

(6.6) A k(Pi) < Xk(P 2 ) when pi < p2.

The proof of (6.6) given below is based on a variational

characterization of Xk(1).

By Theorem 6.1, 0k is open and is therefore a union of disjoint

open intervals. Hence the curve X = Xk (p) consists of one or more

disjoint analytic arcs. It is interesting that these arcs can terminate

only on the curve A = c2(_)p 2 . More precisely, one has

Corollary 6.3. Let P. be a boundary point of 0k • Then

(6.7) lim k() = 0.

It is clear from Theorem 6.2 and (6.3) that the limit in (6.7)

exists and does not exceed c2(o()4. The equality (6.7) is proved below.

The result (6.4) can be improved by strengthening the hypotheses

concerning c(y). A result of this type is
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Theorem 6.4. Let cm < c(O) and assume that for each e > 0 there

is an interval I(E) C R such that

(6.8) c(y) < cm + E for all y E I(e).

Then N o - +c, Ok is unbounded for each k_> 1 and Xm() - C2,112 when
k k

iiooin Ok; i.e.,

(6.9) lim -2 X k() = C.m

The analyticity of Xk(P) and Corollary 2.2 imply the continuity

of the eigenfunctions 4k(y,P). More precisely, one has

Corollary 6.5. For 1 < k < No the function Pk(Y') satisfies

(6.10) k' p-  ' e C(R x 0.).

This completes the formulation of the results of §6.

Proof of Theorem 6.1. The analytic perturbation theory of

[8, Ch. VIII will be used. Note that the operator A may be defined for

all 1 E C by (1.16), (1.18) and is a closed operator in X(R). Moreover,

the domain D(A ) is independent of p and is a Hilbert space with respect

to the norm defined by

(6.11) ,01 102- 1 1
x 2(R + 0 (P- '

(6.11) 112 = (R) + II JC((R) R)

It follows that P - A, is holomorphic in the generalized sense. Indeed,

in the definition of [8, p. 366] one may take Z = D(A) (independent of

p) and define U(p) : Z - C(R) to be the identification map. Then U(U)

is bounded holomorphic (in fact, constant) and

(6.12) V(11) , A, U(W)o> _ -c 2p [(pl-q')' - -j20)
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is holomorphic for all pG Z. Thus A,, is holomorphic. It follows by

[8, p. 370] that each Xk(i) has a Puiseux expansion at each point

PO E 0k . But each Xk(io) is simple (Lemma 3.3) and hence the Puiseux

series can contain no fractional powers of p - po [8, p. 71]. Thus

A k is in fact analytic at each p0 E 0k. This proves both statements of

Theorem 6.1.

Proof of Theorem 6.2 and Corollary 6.3. The eigenvalue Xk(.)

can be characterized by the variational principle [3, pp. 1543-4]

(6.13) Xk(1() = inf sup (A Pq)

k  
D(=1

where Sk denotes the set of all k-dimensional subspaces of K(R).

Moreover, D(A ) is independent of U and

(6.14) (AP,0) 3 Hence + 2 I(y)-2) p-'(y) dy

for all E D(A) [8, p. 322]. Hence if li, < 
112 then

(6.15) (A W ,) < (A cP, )

for all E D(A I) = D(A 2). In particular, (6.13) and (6.15) imply

that if l, 112 G 0k then

(6.16) Xk( ,) k

which proves the weak monotonicity of A It will be convenient to use

(6.16) to prove Corollary 6.3 before proving the strong monotonicity.

To prove Corollary 6.3 note that (6.16) and (6.3) imply that the

limit in (6.7) exists and does not exceed c2(o)p2. But if



95

lim Xk(I) =k < c2 ()' then Corollary 2.2 implies that l0o, X satisfy

(6.17) F( 0 ,X
0 ) = 0;

k0

see (3.28). Moreover, F(p,X) is analytic at PD, X0 by Corollary 2.3.

It follows that X0 is an eigenvalue of A and hence po E 0k by Theorem

6.1. This contradicts the assumption that PO is a boundary point of 0k.

To prove that each Xk(1() is strictly monotonic in 0k two cases

will be considered. First, if X1 , X2 are in the same component of 0k'

say (a,b) C 0k' then Xk(pi) = xk(U2) would imply that Xk(P) = const. in

[P,112] and hence in (a,b), since Xk(i() by Theorem 6.1. But this

contradicts Corollary 6.3 since

(6.18) c2 (o)a2 = lim Ak (i) < lim Ak(i() = c2 (-)b2

&a p-+b

In the second case i and U.2 lie in different components of 
0k9 say

P, E (al,b,) C 0 and 2) C 0k with b, f a2. In this case, by

the preceding argument one has

(6.19) xk(Pl) < c2 ()b2 < c2 (0)a2 <

which completes the proof.

Proof of Theorem 6.4 (sketch). The proof is based on the method

proposed for the proof of Theorem 3.16 and the variational principle

(6.13). Note that the hypothesis (6.8) and Theorem 3.16, generalized to

non-constant p(y), imply that N(p) - for p . Hence No = +c and each

0k is unbounded.

To prove (6.9) choose piece-wise constant functions c0 (y) and

cO(y) such that
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(6.20) c 0 (Y) < c(y) < c 0 (y) for all y E R,

(6.21) coy) = c < co(-) on an interval 10 , and

(6.22) cm + t = c0 (y) < c0 () on an interval I(s).

The notation

.5 0 (R) = L2 (R,c-
2 (y) p-'(y) dy)

(6.23)

C(R) = L2 (R,cO-2(y) p-'(y) dy)

will be used. The three spaces 7C(R), X0 (R) and Y (R) have equivalent

norms. In particular, if 1I10I0 and II
0 denote the norms in I 0 (R) and

X 0(R), respectively, then by (6.20)

(6.24) 1I(NI °  < I1@1 < I1 11o .

Now note that the variational principle can be formulated in the

homogeneous form

(A pip)
(6.25) xk( ) = inf supk ,WS k  jEWD (A) U 011 2

where

(6. 6)(A , ) SR (10,12+11 11 l 2)p-i (y)dy
(6.26) (Ap =

0 R 2 11011 2

Both the numerator in (6.26) and D(A ) are independent of c(y). Hence.

if Au andAO denote the operators corresponding to p(y) c (y) and :(y.

cO(y) respectively, then (6.24) and (6.26) imply
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S- i 2  - I 1o2

for all 0 S D(A0,) D(Ad) - D(A) such that * # 0. The variational

principle (6.25) and (6.27) imply that

(6.28) Xok() < Xk() _ X ()

for all sufficiently large v, where (ok(Ii)} and {AX(p)} are the
eigenvalues of Al. and A, respectively.

The proof of (6.9) can now be completed by showing by direct

calculation that (see (17])

lim -2 xok(U)  C2

(6.29) 
P m

-2 o(j) (CM

It follows from (6.28), (6.29) that

(6.30) c2 < lim inf V- Ak(l) < li sup 1-2 Ak(1) < (cm + C)2.

-_ _ _ __ - " m_ -uP 2 Y U)

Equation (6.9) follows because, by hypothesis, e > 0 is arbitrary.

Proof of Corollary 6.5. The result (6.10) is -ediate from

Corollary 2.2, the relation

(6.31) *k(YO) - *3(y,1,,A(1))/ (.,1,AkCI)n

and Theorem 6.1.

I .

t.1
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§7. The Spectral Family of A.

The acoustic propagator A was defined in §1 and shown to be a

selfadjoint non-negative operator in the Hilbert space 7C. In this

section the spectral family {H(X) I X > 0} of A is constructed by means

of the normal mode functions {*+,i_,*0,i1,.*}. The method of construc-

tion is to use Fourier analysis in the variables x e R 2 to reduce A to

the operator Aip, and then to use the spectral representation of HIpI(O

developed in §5. The construction is given in Theorems 7.1-7.4. In the

remainder of the section the proofs of Theorems 7.1-7.4 are developed in

a series of lemmas and auxiliary theorems.

The formal definitions of the normal mode functions *+(x,yp,.X),

0(xYpA) and Ok(x,y,p) were given in §1, equations (1.29)-(1.31) and

(1.36)-(1.41). The definitions were completed by the construction of

the special solutions j(y,P,X) in §2 and of the normalizing factors

a_(i ,X), a 0 (,X), ak(p) in §5. The construction of 11() will be based

on these normal mode functions and the corresponding generalized Fourier

transforms. Formally the latter are the scalar products of functions

f e 3C with the normal mode functions. The following notation will

be used.

(7.1) f±(PA) - a +(x,y,p,A) f(x,y) c-2(y) p-1(y) dxdy,

(7.2) f°(p"X) - JR3 j0(x,y,p,X) f(x,y) c-2(y) P-1(y) dxdy,

(7.3) fk(P) - J 3 k(x,y,p) f(x,y) c'2 (y) p-(y) dxdy, k > I.

99 I.
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Of course these integrals need not converge since the normal mode func-

tions are not in K. Instead, they will be interpreted as Hilbert space

limits as in the Plancherel theory of the Fourier transform. This

interpretation will be based on the following three theorems.

Theorem 7.1. If f 4 LI(R 3) then the integrals in (7.1), (7.2),

(7.3) are absolutely convergent for (p,X) 6 12, (p,A) 6 0 and p 6 ",

respectively, and

(7.4) 6 C(Q), "f.6 Cl(), ik 6 C(nk), k > 1.

For each f G X and M > 0 define

f(x,y) if Ixl I M and ly < M,
(7.5) fm(xly)

0 if lxi > M or ljy > M.

It is clear that fm * f in Xwhen M " m. Moreover, fm E Kn L,(R 3) and

one has

Theorem 7.2. For every f e K and M > 0,

(7.6) M L2(), o L2(10), 6mk r L2(f' k > 1,

and the Parseval relation holds:

(7.7) + +2H'L() "Mkl
k-0 (k

The relation (7.7) suggests the introduction of the direct sum

space

(7.8) K - L,(Q) + L2 () + L2(Wk).
k=0

I
r.



101

iK is a Hilbert space with norm defined by

(7.9), ,h,I , .h+ ( 2h 12 N- IhkI ,f ;L2 () 
2 (Q) k-0

see [3, p. 1783]. Theorem 7.2 implies that for each f 6 X and M > 0,

the sequence fM - (fM+,fM-fM0fM1 * *) e Xand

(7.10) IfM jC - IimkI.

For arbitrary f e K the generalized Fourier transforms associated with A

are defined by

Theorem 7.3. For all f E K, {fM } is a Cauchy sequence in K, for

M - o, and hence

(7.11) li m- f - ffiv

exists in K. In particular, each of the limits

- L 2 (Q)-lim f_+

(7.12) --

fo L2 (a0 )-lim fMO

f-k L 2 ("k)-liM 1Mk' k > 1,
M4-

exists and the Parseval relation

(7.13) If12- 1If12 1+l 2 + I_(12 + I a 12

X+T L2( ~ L2 (1) k0 L2"k

holds for every f X K.
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Theorem 7.3 associates with each f E a family of generalized

Fourier transforms f = + K such that

(7.14) f+(p,X) - L 2 (a)-lim J+(xy,p,X) f(xy)c-2 (y)p-1 (y)dxdy,

(7.15)~ ~ ~ ~-0 fo(,, L,(o -llm f (x y c2(y<- y)d4y

(7.15) 10 (pX) - L 2 ('2)-lM *,(x,y,p,) f(xy)- 2 (y)p-1 (y)dxdy,

MN -M f xl
f~l14. f( r -2 -1

(7.16) f - L2 )4ki (~dxdy
k(P 201 Y xi kxty) f(x-y)c (y)p (~xy

k > 1.

It is easy to verify that if f (=-K fl L,( ( 3) then the functions

defined by Theorems 7.1 and 7.3 are equivalent and hence

the notation is unambiguous. A construction of the spectral family

(fl1(01 based on these functions is described by

Theorem 7.4. For all f,g 6 K and all real ~z>0, I1(i) satisfies

the relation

(f,II(i)g) fa J (IX)!(pX j+ , + ?_(p,) j_(p,X) dpdX

(7.17)

+ fJI 1(jj-X) !0 (p.,X) j0(pX) dpdX

+ I J' Ul-xkopl)) !k(P) 'k(P) dP

where H(Pz) - 1 for P~ ! 0 and H(P) - 0 for ui < 0.

The remainder of §7 presents the proofs of these theorems. The

proof of Theorem 7.1 will be based on

kIl
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Lemma 7.5. The normal mode functions satisfy

tP+(x~y~pX) 6 C(R3 x a),

(7.18)

'o(x,y,p,A) E C(R3 x 1o),

*k(X,y,p) e C(R 3 x Sk), k > 1.

Moreover, for each compact set K C S there exists a constant Mk such

that

* (7.19) I+(x,y,pA)l < MK for all (x,y) r R
3 and (p,X) E K.

Similarly, for each compact K C 9, there exists a constant MK such that

(7.20) IP,(x,y,p,X)I < MK for all (x,y) E R3 and (p,A) r K,

and for each k > 1 and compact K C i there exists a constant MK such

that

(7.21) I*k(X,y,p)I < MK for all (x,y) e R3 and p 6 K.

Proof of Lemma 7.5. To prove (7.18) note that, by (1.31), (1.36)

(7.22) *+(x,y,p,X) - (27r)- l eip x a+(IpI,X) 0,(ypj,,X)

where a+(U,X) is defined by (5.14). The continuity of *,(y,IpIA) on

R x Q follows from Corollary 2.2. The continuity of a+(IpI,A) on 1

follows from (5.10), (5.14) and the assumed continuity of the phase

function e+( ,X). Thus the continuity of *+ on R3 X S follows from

j (7.22). The proofs for *_ and *0 are similar and will not be given.

The continuity of 1k' k > 1, follows from Corollary 6.5.

I
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To prove (7.19) for 0+ note that (7.22) and the continuity of

a+(IpI,X) imply that it is enough to prove the existence of a constant

MK such that

(7.23) $4 (YI PI'A)l < M. for all y E R and (p,X) r K.

Now the uniformity of the asymptotic estimates (2.11) on the compact

sets r4 of Corollary 2.4 implies that

(7.24) 4(y, jpIA) - exp {-iyq_(Lpl,A)}[l + o(l)], y -

uniformly for (p,A) C K. Hence, there exists a constant YK such that

(7.25) 104(y,jpPA)l _ 2 for all y < -YK and (p,X) C K.

Similarly, using the relation

(7.26) 0.(y,-,) - c41 (,)A) 01 (y,U,) + c 4 2 (UA) 02(y,A)

from (4.1), (4.2), (4.3), the continuity of c 4(,X) and c42(XA) and

the uniformity of the asymptotic estimates for 0,, *2 when y - +m, one

finds that there exist constants y , M such that

(7.27) 14(y, jpIX)l < M4 for all y > y and (p,.) 6 K.

Finally, the continuity of 4(y,IpIX) on R x 11, which follows from

Corollary 2.2, implies the existence of a constant M such that

(7.28) 104,(yI AL)l < M; for -yK y - yK and (p,) r K.

Combining (7.25), (7.27) and (7.28) gives the estimate (7.23) with

MK - Max (2,MM;).
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The proofs of (7.19) for 4_ and of (7.20) and (7.21) can be

given by the same method. This completes the discussion of Lemma 7.5.

Proof of Theorem 7.1. Consider the function f+(p,A). The

absolute convergence of the integral in (7.1) for each (p,A) E 0 follows

from (7.19). To prove that f+ 6 C(Q) let (p 0 ,A0 ) r 9 and let K C 0 be

compact and contain (p0,X0) in its interior. Then by Lemma 7.5

(7.29) II+(x,y,p,X) f(x,y)I MK If(x,y)I for (x,y) 6 R3, (p,X) e K.

Hence, the continuity of f+ at (p0,A0) follows from (7.18) and (7.29) by

Lebesgue's dominated convergence theorem. The continuity of f_, f0 and

fk follows by the same argument. This completes the proof of Theorem 7.1.

Relationship of A to A,,. As a preparation for the proofs of

Theorems 7.2, 7.3 and 7.4 the operator A will be related to A II by

Fourier analysis in the variables x 6 R2 . To this end note that if

u E K then Fubini's theorem implies that u(.,y) 6 L2(R
2) for almost

every y 6 R. Thus if F : L2(R
2) - L2 (R

2 ) denotes the Fourier transform

in L2(R
2) then the Plancherel theory implies that

(7.30) G(py) - (Fu)(p,y) - L2(R
2 )-lim (27) -' e-ip'x u(xy)dx

exists for almost every y 6 R and

(7.31) 1 R2 uIGp) dp -1f fR xy) 1 dx for a.e. yr R.

Another application of Fubini's theorem gives
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Lemma 7.6. u E X if and only if U = Fue IC and the mapping

F : X XC is unitary. In particular

(7.32) iGIU. =ul K for all u E K.

The Fourier transform of the acoustic propagator A will be

denoted by A. Thus

(7.33) A FAF D() - F D(A).

A more detailed characterization of D(l) is needed to relate A to A P"

It will be based on

Lemma 7.7. Let u E 3. Then Dju E 3C (j - 1,2) if and only if

p u(p,y) 3C and

(7.34) F D. u - pj Fu, j - 1,2.

Similarly, Dyu C X if and only if Dyi X K and

(7.35) F D u Dy Fu.

Proof of Lemma 7.7. The distributional derivatives Dju, Dyu may
j y

be characterized as temperate distributions on the Schwartz space S(R3)

of rapidly decreasing testing functions [7]. S(R3) is mapped onto

itself by F. The proof of (7.34) is essentially the same as in the

standard Plancherel theory. To verify (7.35) note that the distribution-

theoretic definition of DyU E X is

(7.36) JR3Dyu(xy) O(x,y)dxdy - -Rsu(x,y) D y(x,y)dxdy for all e S(R 3).
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Application of Parseval's relation gives

(7.37) 'R3 (F Dyu) dpdy - -3 (Fu)(F D y)dpdy for all C S S(R3 ).

Now for * E S(R3) it is easy to verify that

(7.38) Dy -DyFO F Dy

Thus (7.37) is equivalent to

(7.39) 3 (F DyU) dpdy -- f3 (u) D y dpdy for all ' E S(R3)

which in turn is equivalent to (7.35).

Application of Lemma 7.7 to A gives

Lemma 7.8. The operator I is characterized by the relations

(7.40) F L'(R 3) = { , p,, p2ii and D y are in ;c},

(7.41) D(A) F L'(R3 ) f { D (p DU) - 1p12 a E K], and
2y yU

(7.42) u - -c2 PD y(p-'Dy) - p12 a}, a E D(A).

Proof of Lemma 7.8. These results follow from application of

Lemma 7.7 to the definition of L2(R 3), D(A) and A - equations (1.2),

(1.8) and (1.9).

Corollary 7.9. For all u 6 D(A) one has

(7.43) a(p,.) E D(Aip1 ) and
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(7.44) (A u)(p,*) - AIp I ((p,-)

for almost every p E R2 .

Corollary 7.9 is an immediate consequence of Lemma 7.6, Lemma

7.8 and Fubini's theorem.

The Sets Xom, ;e' and X"'. The following subsets of X will

be used in the proofs of Theorems 7.2, 7.3 and 7.4.

(7.45) com - X n {f I supp f is compact},

(7.46) 30 r'(R 3) _ {f I = Ff e D(R3)},

(7.47) W'- {f(x,y)- f1 (x)f2 (y) I frl F-0D(R2),f 2E3C(R),supp f2 compact},

m
(7.48) X"' - span W' {f a a I a E C'fa CLr }.

In (7.46) and (7.47), D(On ) denotes the Schwartz space of testing func-

tions with compact support [7]. The sets Xcom, N' and X"' are linear

submanifolds of X which are dense in X. Indeed, it is well known that

0(R3) is dense in L2 (R ). This fact implies that Ncom is dense in 1C.

The denseness of K' in JC follows from that of D(R3) and the unitarity of

F. The denseness of K"' follows from the fact that 7. is the tensor

product of L2(R
2) and 3C(R).

It is clear that each of the sets Xcom N' and X"' is a subset

of 3C C L,(R 3). Hence, for f in one of these sets, the transforms f+, fo

and fk defined by (7.1)-(7.3) are continuous functions by Theorem 7.1.

An alternative characterization is given by

6w
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Lemma 7.10. If f E Kcom U 3' U 3C"' then

(7.49) f+(p,x) = JR ±(y,ipl,X) f(p,y) c-2(y) p-1 (y) dy,

7--, R- - p ) - Y

(7.51) fk(P) k('P) f(Py) c-2(y) p-1(y) dy, k > 1.
R

Proof of Lemma 7.10. Equations (7.49)-(7.51) follow from

(7.1)-(7.3) on substituting the definitions (1.36)-(1.38) of the normal

mode functions and carrying out the x-integration. These operations are

justified for f E L 1 (R 3 ) by Lemma 7.5 and Fubini's theorem.

Corollary 7.11. If f E e' and f(x,y) - fi(x) f 2 (y) then

(7.52) f+(p,) f f 1 (p)f 2 _(IpIA) [F ]1p] 1+f](p,X) f [,lpj+Ff](p,X),

(7.53) f0(pA) = f1(p)f2 0 (pIA) = [F 4,,p1ofl(P) = [tippo Ff](p,X),

(7.54) k(p) = ̂ f(p)i2k(JpJ) = [F 4jplkf](p)= [IplkFf](p).

These results follow immediately from Lemma 7.10 and the results

of §5.

The notation

(7.55) R(T,r) = (T -

will be used for the resolvent of T. The proofs of Theorems 7.2, 7.3

and 7.4 will be based on Stone's theorem relating R(A,C) and the

spectral family of A, together with the following three lemmas relating

A and Alpi.
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Lemma 7.12. Let f E X" and let u, R(A,C)f or, equivalently,

= R(A,C)f. Then

(7.56) (y =J Glpl(y,y',) f(p,y') c-2(y') p-1 (y') dy'

.R

for almost every (p,y) E R 3 where G (y,y', ) is the Green's function

for A.-

Proof of Lemma 7.12. It is enough to verify (7.56) for functions

f E X'. Let f(x,y) = f1 (x)f2(y) be such a function so that f(py)

= f1(p)f2 (y). Now u E D(A) and hence by Corollary 7.9

(7.57) ((A - )^C)(p,y) - ((Alp, - 0^)(Py) = fl(p)f2(y)

for almost every (p,y) E R3 . It follows that

(7.58) (iC(p,y) - [R(Alpl1 ,)1 1 (p)f2 ](y) =f(p)[R(Alp, -)f ](y)

which is equivalent to (7.56) because

(7.59) [R(AlPi ',)f 2 ](y) f2(Y') C-2(y') p-G(y() dy'.

fR

Lemma 7.13. Let f(x,y) = f(x) f2(y) and g(x,y) = g1(x)g2 (y) be

elements of e' and let +ie with X E R and C > 0. Then for all

p E R one has

J (f,[R(A,1) - R(A, )]g)dX

.j (7.60)

R( J '(p) 1 (p) - (f2 [R(A p l,4) - R(Alpl ')]g 2)ddp"

I



Proof of Lemma 7.13. The Plancherel theory implies that

(7.61) (f,[R(A,?) - R(A,1)]g) -(f,[R(A,t) - R(AZ~19).

Combining this and (7.58) gives, by Fubini's theoremr

(7.62) (f,[R(A,l)- R(A, 2]g f Z1 p( 1 [(~j~-( 1 ,]g 2)fRV

Now a standard estimate for the resolvent of a selfadjoint operator

[8, p. 272] implies that 1

(7.63) III(P) ^IP(2 '-)192p1 1(01"~21102

Thus integrating (7.62) over -1 < X < U. gives (7.60) by Fubini's theorem.

(.7 ofTerm74fralfgLe-m 7.14. The spectral family [11(pi)) satisfies relation

Proof of Leimma 7.14. Stone's theorem in its general form is

[16, p. 79]

(7.64) T:: c-fa)g.

Moreover, since I1(i-) -liin fl~i 6) and lim fl((p 6)-) (- )
6-*G+ 00

(7.65) implies
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(7.66) (f II(W-) f - iri urn ur (f,[R(A,X+ie) -R(A,X-iE)If)dX.

6-+0+ e-+O+ I

If f(x,y) f f1(x)f2 (y) E J(" then combining (7.60) with g -f and (7.66)

gives

(7.67)

Nlow application of the spectral theorem to Alp, gives

(7.8) (f2 ,[R(Alpl,X+ie)-RA 1 )- ] 2) J' -XW)24.e2 (f2~ 1 1 (d')

* It follows that

ri.'-6  pl,~iE - R(A p1' X-ir-)lf2)dXI

(7.69)

2-dXJ(f lipi(dX)f2 ).

Moreover,

(7.70) f- ___<7-_____27

for all A'e R and all c > 0. Combining (7.69) and (7.70) gives
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(7.71) f [R(AjP[ 'X+ iC) - R(APi'x-ie)lf d I r If I

for all p e R2 and all P > 0, 6 > 0 and e > 0. In addition Stone's

theorem applied to lpi gives

I im lim f (f2,[R(Alp,X+I-c) - R(Aipi,X-ie)]f 2 )dX

6-i C £4+ -1
(7.72)

= (f2 I 1pI1 (11-)f
2).

Equations (7.67), (7.72) and the estimate (7.71) imply, by Lebesgue's

dominated convergence theorem,

(7.73) (fI1(4-)f) - J )2 f( (f2 ,Ijpj(P-)f2) dp.

It follows by polarization that

( 7 .74 ( f : ( P -) g) 2 p) 9 (p ) (f 2 ,R 1p l( 1- )g 2 ) dp

for all f,g E e'. The same argument applied to (7.65) gives the relation

(7.75) (f,[T(p)+TR(p-)]g) - fR 2 (P) " (P)(f 2 '[P11p(1) +TRjpj(j-) ]g2)dp

Subtracting (7.74) from (7.75) gives

(7.76) (f,I(u)g) - JR2 f'(p) 1 (p)(f 2, 1jpl (U) g2 )dp

IR
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for all f,g 6 IC'. To prove the relation (7.17) for f,g 6 ' note that

the construction of H given by (5.27) implies, by polarization

(f 2-111p}(11)92)

(7.77) r
7 A() up(I - A)[fz+(Ipl,X) 92̂+(dp(,A) + f2_(IpIA) i2 (Iplj )]dX

+i

+AO(IpI) H(- X) f20 0(p(,X) o20(jpj,A) dX,

+H(p- Xk(lP[)) f 2k(Ip[) gzk(lPI)
k-l

for all p E R2 such that jpj > 0, where

A(IpI) - [X I c2(-_)lp 2 < Xj}, and

(7.78)

A0(Ipl) - (X I C2(_)1p12 < ) < C2(_)Ipi2}.

Substituting this into (7.76) and recalling the definitions of SI, a. and

ik (k > 1) gives (7.19) for f,g E V'. The relation extends immediately

to all f,g 6 X"' by linearity. This completes the proof of Lemma 7.14.

Proof of Theorem 7.2. Let f 6 X and H > 0 be given. Then since

X"' is dense in X there exists a sequence {gn } in 3"' such that gn - fm

in X. Note that since

(7.7)1- n . J1 If(x,y) - gn(x,y)I2 c-2 (y) p-(y)dXdy

(7.79) " M 
J I y 

X f' 
y dxRy

S+ Jjyj> M JR2 [gn(X,y)12 c-2(y) 0-I(Y) dXdy
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it may be assumed that gn(xY) - 0 for IYJ > M. Now Lema 7.14 implies

chat Parseval's relation

(7.80) 22 + Nyl

k=0

holds for all g E 0"', where j - (i+,i-,.0, 1 .,")" On applying (7.80)

to the differences gn - gm it is found that in = (n+'in-'in'n" )

is a Cauchy sequence in k. Hence there exists a limit

(7.81) lir j " h - (h+,h_,h,h,' ' ) 6 K,
n

since k is a Hilbert space. To complete the proof of Theorem 7.2 it will

be enough to show that

fM+(p,X) - h+(p,X) for a.e. (p,,) E 9,

(7.82)

fMo(p,X) - h,(p,X) for a.e. (p,X) e Sog

fMk(p) - hk(p) for a.e. p e 1\, k > 1.

This clearly implies (7.6) since h E k. Moreover, since Hilbert space

convergence implies convergence of the norms, the relation (7.80) for

n G K"' implies

Nk-1
(7.83) I lI im Is I - 1im Ig 1 nl h ht

rrg- n-M k=0

which is equivalent to (7.7) when (7.82) holds.

Relation (7.82) will be proved for fI+" The proofs for the

remaining cases are entirely similar. To prove that f+(p,X) - h+(p,X)

for a.e. (p,X) in Q note that if K is any compact subset of n then

fm+ 6 C(K) C L2 (K) by Theorem 7.1 and

*1_
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(7.84) If+ -hh+IL (K) - im , -1n+L

Now by Loma 7.10

(7.85) fM+(p,.X) - i+(p,A) = p - +(Y, IpI,X) [fM(Py) - n(P,y)]c-2 (y)P-1(y)dy.

Hence by Lema 7.5 and Schwarz's inequality

Ifm.(pA)~~~~ -) In~' ~~j~ Py c- (y)p P 1 (y) dy
IfM+(P'A') - 'n+(P'k)l f MK r -M f M(P'Y) - ^n(P'Y -()'()d

(7.86)

-~ 2( p(ydJ 1/2 H -(,) 9(,~ 2C2yp 1dy1/2
K -(y)-(y)dy M f) 2 -(y)p-(y)dyj

r- -MJ

for all (p,X) 6 K. It follows that there is a constant C = C(K,M) such

that

(7.87) I M+ - in+'L2 (K) < C if Ix - uI C I f - gni .

Since gn - f in xi, (7.87) implies that the limit in (7.84) is zero and

hence fr+(pA) - h+(p,X) for a.e. (p,A) 6 K. This completes the proof

since K C fl was an arbitrary compact set.

Proof of Theorem 7.3. To prove that { is a Cauchy sequence

in K for N m, let H > 0 and N > 0 be arbitrary numbers and let {gM),

N N .f in KC. Then, as
Ig) be sequences in K"' such that gM -- f, i

proved above, gn -fM and gn - fN in K and Parseval's relation (7.80)

o M ~N Passage to the limit n + gives

(7.88) If - fNi H f -

IN
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which implies that (Mi is a Cauchy sequence because fm f in K when

M 0. Finally, one gets (7.13) for arbitrary f 6 K by passage to the

limit in (7.9).

Proof of Theorem 7.4. It will be enough to prove (7.17) for

f - g E K since the general case then follows by polarization. Now by

Lemma 7.14 r

(g, 110) g) - J H(_-X)(t+(p,X)j2 + li_(p,X))dpdX
(7.89)

+ JH(ii-X)1ig(px)j2 dpdl

+ - H(P - Xk(pI)) lik(P)1 2 dp
k-i

for all g E K"'. Let f E K, M > 0 and let {gn} be a sequence in X"' such

that gn - fM in K. Then it follows from the proof of Theorem 7.2 that

in -!M in k. Replacing g by gn in (7.89) and making n - - gives (7.89)

with g - fm. If No - 4- then passage to the limit is justified because

the right-hand side of (7.89) is majorized by

N i-1
(7.90) Ij+I2 + I1_12 + I 1jk1 2 < .

k-O

Thus (7.89) is valid with g - fm where f e X and M > 0 are arbitrary.

Making M - - and repeating the above argument gives (7.89) with

g - f e K, by Theorem 7.3.

Another proof may be obtained by noting that the left-hand side

of (7.89) is a bounded quadratic form on K, while the right-hand side is
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a bounded quadratic function of T = Yg because of the majorization by

(7.90). Thus (7.17) follows from the boundedness of T and the fact that

(7.89) holds for g in the dense set K"'.

II-fV

.1



§8. Normal Mode Expansions for A.

The normal mode expansions for the acoustic propagator A that

are the main results of this report are formulated and proved in this

section. The starting point is the representation of the spectral

family of A given by Theorem 7.4. The main result, Theorem 8.8, shows

that the family {+, _,@0,I,''} is a complete orthogonal family of

normal modes for A. Theorem 8.9 shows that it provides a spectral

representation of A. These results are shown to imply that the families

and {,, " defined in §1, are also complete

orthogonal families of normal modes for A and provide alternative [.

spectral representations.

The basic representation space for A associated with the family

i- { ,ois the direct sum spacefN 1
(8.1) = L2(Q) + L2 (Q) + I L2(Qk)

k-O

introduced in §7. Theorem 7.3 associates with each f E X an element

f E JC. The Parseval relation (7.13) implies that the linear operator

(8.2) T : X

defined by

(8.3) f =f for all f E

is an isometry; i.e.,

119
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(8.4) IT fly. ifl3Kfor all fE .

The principal result of this section is

Theorem 8.1. The operator T is unitary; i.e.,

(8.5) T* T 1 in X, and

(8.6) 1 -1 in K.

Relations (8.5) and (8.6) generalize the completeness and

orthogonality properties, respectively, of the eigenfunction expansions

for operators with discrete spectra. Relation (8.5) is equivalent to

(8.4) and thus follows from Theorem 7.3. Relation (8.6) is shown below

to follow from the unitarity of the operator T associated with A

(Theorem 5.6).

The completeness relation (8.5) implies that every f E K has a

normal mode expansion based on the family + The

orthogonality relation (8.6) implies that the space K is isomorphic to

K and thus provides a parameterization of the set of all states f = X

of the acoustic field. These implications of Theorem 8.1 will be devel-

oped in a series of corollaries.

The normal mode expansion will be based on the linear operators

(8.7) T_+ : X - L2 (0)

(8.8) Tk : 3- " L.( ), 0 < k < N0,

defined for all f 6 K by

(8.9) 'i, f
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(8.10) T k f  fk ' 0 < k < Not

where t fk are defined as in Theorem 7.3. It is clear thatk!
(8.11) ' f - f,Tf,Tof,ylf,'

for all f E K and, by (8.4),

(8.12) ITfi+- + If1 fIf + k-0O k

In particular, each of the operators T+, T is bounded with norm not

k

exceeding 1. The normal mode expansion for A, in abstract form, is

given by

Corollary 8.2. The family {T+,',',,.} satisfies

N 1

(8.13) 1- T.* T + '- + kO T

where 1 is the identity operator in KC and the series in (8.13) converges

strongly.

It will be shown that (8.13) is equivalent to the completeness

relation (8.5). The orthogonality relation (8.6) will be shown to

be equivalent to the relations described by

Corollary 8.3. The family { satisfies the

relations

(8.14) V± _ o 1 in L2 (0),

(8.15) 'k 21*k I n L 2 ~), < k< No
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In addition, Y + T- - T_ + -0, +Tk0, Yk T -  0 and Tk T = 0 for

all k and Z # k such that 0 < k, i < N o.

Relations (8.14), (8.15) imply that each of the operators T+,

' T k (0 < k < NO) is partially isometric [8, p. 258]. It follows that

the operators in K defined by

(8.16)

Pk 'k' kT 0 < k < N0,

are orthogonal projections in X onto subspaces

(8.17)
M Pk J, 0 < k < N o .

Combining this with Corollaries 8.2 and 8.3 gives

Corollary 8.4. tP+,P ,P,P,,***} is a complete family of

orthogonal projections in X; i.e., the range spaces defined by (8.17)

are mutually orthogonal and

NO-1
(8.18) 1 P+ + P_ + I P k*

k-0

The spaces (8.17) are subspaces of X and hence the direct sum

space

(8.19) KC+ + X + Nl k

k-O

may be identified with the set of all
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N -
(8.20) f f++ f- + fk

k=O

in X such that

(8.21) f+ E + k G for 0 < k < N0

and

NO-1
(8.22) If+12 + If 12 + E fk2 < 00.

k=ffO

With this convention, Corollary 8.4 implies

Corollary 8.5. K has the decomposition

(8.23) 
fi + x + N -l .

k=O

The definitions of the operators +, Tk and equations (7.14)-

(7.16) imply

Corollary 8.6. The operators T+' Tk have the representations

(8.24) ('_.f)(p,X) = L2(S)-lim 3 ip4(x,y,p,X) f(x,y)c-2(y)p-(y)dxdy,

(8.25) (T f)(p'X) - L2(0k)-1im J (xyp,) f(xy)c-2((y)p (y)dxdy,

(8.26) (f() L2 (k)-lim J 3k(x'yP) f(xy) -(Y)p- (Y)dxdy

Ifor 1 < k < N o where RM R3 n {(x,y) j lxi _ i, Iy < M},
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Of course, the family of sets {3 j M > 0} can be replaced by

any family (KM I M > 01 of compact sets whose characteristic functions

tend to 1 almost everywhere in R 3 when M . Corollary 8.6 implies a

similar representation for the adjoint operators Ti+', . It is

formulated as
* * hv h ersnaip

Corollary 8.7. The operators +, have the representationsIk
(8.27) (T'g+)(x,y) = 1-lim *+(x,y,p,X) g+(p,X)dpd.,

(8.28) (T'g0)(x,y) = j-lim 40(x,y,p,X) g0(p,X)dpdX,

(8.29) (T kk) (, Y) - li Ak~x'y'P) gk(p)dp'

for 1 < k < No where § and - (0 < k < N.) are families of compact

subsets of Q and i whose characteristic functions tend to 1 almost

everywhere in 0 and Slk' respectively, when M .

By combining Theorem 8.1 and Corollaries 8.2, 8.6 and 8.7 the

following explicit formulation of the normal mode expansion if obtained.

Theorem 8.8. Every f E X has a representation

(8.30) f(x,y) - f+(x,y) + f_(x,y) + O fk(x,y),
k-0

convergent in K, where f+ 6 + and fk 0 < k < N0 , are given by

(8.31) f±(xy) - J-lim ± (xy,p,X) f.(p,X)dpdA,

-- li
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(8.32) fo(x,y) = X-lim f,,0 (xypX) f°(pX)dpdX9
M- 0

(8.33) fk(x,y) = X-lim k(x,y,p) fk(p)dp,

for 1 < k < No and f,+, fk are defined by (7.14)-(7.16). Conversely, if

f - (f+,f_,f0,f,''') is any vector in i( then (8.30)-(8.33) define a

vector f E JC such that f+, fk are related to f by (7.14)-(7.16).

Theorem 8.9. The unitary operator T defines a spectral repre-

sentation for A in k in the sense that for all f E D(A) one has

(8.34) (T+A f)(p,X) = X(T_+f)(p,X) = X f+(p,X),

(8.35) ('oA f)(p,X) X(1 0f)(p,X) = x f0 (p,X),

(8.36) (plkA f)(p) = Ak(pf)(T p) = Ik(PI) fk(P),

for I < k < N0 .

Corollary 8.10. The complete family of orthogonal projections

{P+,P_,P 1,PI, " °*} reduces A; i.e.,

(8.37) P+A C A P+, PkA C A Pk

for 0 < k < No and if

A+ - A P+ P+ A P+

(8.38)
Ak - A Pk = Pk A Pk' 0 < k < No,

- . .- - -t Ow,



126

denote the parts of A in X_, and Yk then

No-
(8.39) A - A+ + A- + Ak

k=0

The Family {U(x,y,p,g) I (p,q) G R3 - N}. It will now be shown

how the normal mode expansion of Theorem 8.8 can be reformulated in

terms of the family {¢+, F,1 2 ,-. To begin equation (1.59) for the

normalizing factor c(p,q) will be verified.

First, recall that the normalizing factors a+(u,X), ao(u,X) for

+ po are related to the factors c+(p,X), co(UX) in their asymptotic

forms, equations (1.33)-(1.35), by

(8.40) C M T-+ a±, c. = T I a0 ;

see (4.8), (4.14), (4.21). Combining (8.40) with equations (4.10),

I (4.16), (4.23) for T+, To and equations (5.10), (5.14), (5.19), (5.21)
defining a±, a0 gives

f 1/2 1~.) l/2
(8.41) c±(1i,)) = [4W q(,J c0 (j',) = [+(x3) 1

provided that the phase factors e i ±
, e 6 ° are defined by

ei e± ( ' )  i[N 3c 2]/l[43¢2 1I, X e A(i),

(8.42)

e ie0(UX) XeA~)~ieo~,x= i[€3€,]/I1€3 2]I, Xe A 0(ii).

On combining (8.41) and the definition of 0 (xy,p,q), equations (1.53)

and (1.54), and the asymptotic forms (1.33)-(1.35) for 0±, *0 one

obtains the asymptotic forms (1.57), (1.58) for 0+ with the normalizing

factor c(p,q) defined by (1.59).
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To derive the normal mode expansion for the family {p'2"

from that for {P+,IP ,4~ 1 ,iJ2**} it is clearly sufficient to restrict

attention to the subspacer

(8.43) 3f-X C

and the corresponding orthogonal projection

(8.44) Pf - P+ +P- + P0 .

Thus if h E X and hf P Ph h+ + h + ho then Theorem 8.8 implies that

h (X,y) = P(x,y~p,X) i +(p,X)dpdX + f Opxyqp,) h0 Cp,X)dpdX

(8.45) I
+ f*-(x,Y,p,A) Rh(p.A)dpdA

where the integrals converge in X. Changing the variables of integration

in the three integrals by means of the mappings X+' X0 and X_,

respectively, and using the definition (1.53), (1.54) of 4 gives

hf(x,Y) = p+(x,y,p,q) ii+(p,X)c(ao)(2q)'I 2 dpdq

(8.46) 4

+ JC *4-(x,y,p,q) RCp,X)c(o)(2q) 1
12 dpdq

Co

fR 3_N (x,y,p,q) h4-(p,q)dpdq

where X -X(p,q) is defined by (1.56) and
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(2q)1/2c() C h+(pX(p,q)), (p,q) e C+,

(8.47) h (p,q) { (2q)/2c( )ho(p,X(pq)), (p,q) E COS

(21 q11/ 2 C(-__) &_(p,X(p,q)), (p,q) E C_.

It is easy to verify by considering the three cones C+, CO and C_

separately that

-2.

(8.48) h (pq) f 3 (x,y,p,q) h(x,y) c 2 (y) 1 (y)dxdy

where the integral converges in L2(R
3). Moreover, it can be verified by

direct calculation, using the Parseval relation of Theorem 7.3, that

(8.49) Ihf I - Ih+I L2 (R3 )

for all h 6 C. These consideration's suggest 9

Theorem 8.11. For all h r X the limit

(8.50) h+(pq) - L2 (R)lim +(x,y,p,q) h(x,y)c-2(y)p- (y)dxdy

exists. Moreover, the mapping 0+ X -C L2 (R
3) defined by 0+h - f+ is a

partial isometry such that

(8.51) 0+ 0* 1 and 0*+ + - Pf,

and the adjoint mapping hf - +* h+ is given by

+ +
(8.52) hf(x,y) - J-lim J+(x,y,p,q) h+(p,q)dpdq.

Finally (Ri-N) M

Finally, 0+ is a spectral mapping for A in the sense that for all
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h 6 D(A) one has

(8.53) ($+A h)(p,q) = X(p,q) P+ h(pq)

where X(p,q) is defined by (1.56).

Note that Theorem 8.11 is simply a reformulation of Theorem 8.8

and not a new theorem.

The Family {0.(x,y,p,q) I (p,q) E R - N}. The analogue of

Theorem 8.11 for the family {_} will be formulated as

Corollary 8.12. For all h E V the limit

(8.54) h-(pq) L,(R1)-li 3 0_(x,y,p,q) h(xy)c 2 (y)p1 (y)dxdy

exists and the mapping 3 : C L2(R
3) defined by Oh h_ is a partial

isometry such that

(8.55) 0_ K 1 and 0" = Pf.

Moreover,

(8.56) hf(xy) X-lim _(x,y,p,q) h_(p,q)dpdq.
f 3R

Finally, for all h 4 D(A), one has

(8.57) (OA h)(p,q) - X(p,q) 4_h(pq).

These results are direct corollaries of Theorem 8.11. This

follows from the observations that f(p,q) - f(-p,q) defines a unitary

transformation in L2 (R3 ) while f Y defines a unitary transformation in

t both X and L2 (R 3).
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This completes the formulation of the results of §8. The proofs

will now be presented.

The proofs of Theorem 8.1 and Corollaries 8.2 and 8.3 will be

based on a lemma concerning bounded linear operators from a Hilbert

space into a direct sum space. To formulate it let K and Nk (k E N)

denote Hilbert spaces, where N is a finite or denumerable set, and

define

(8.58) ;'-I k
kEN

Elements of K will be written g {gk} where gk E J and

(8.59) 1g Ig, 12nk <-

if 10k is the norm in Jk" If

(8.60) B : i

is a bounded linear operator then

(8.61) Bf - {(Bf)k} - (Bkf}

where

(8.62) B: k C

is a bounded linear operator. With this notation one has

Lemma 8.13. The adjoint operator B*: K - is given by

(8.63) B*g " [ B gk, g " {gki 6 K,
krEN k g) K
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where the series converges in JC. Hence

(8.64) B*B [ Bk Bk,

where the series converges strongly, and

(8.65) BB BBgj, g g ,

where the series converge in "k

Proof. If N is finite then (8.63) follows directly from the

definition of B*. If N is denumerably infinite then (8.63) holds for

all g e X with finitely many non-zero components gk" But any g E 3C can

be approximated in R by such vectors and B* is bounded. The convergence

in K of the series in (8.63) follows. Equation (8.64) follows on

applying (8.63) to the vector (8.61). (8.65) follows on applying B to

the vector (8.63).

Corollary 8.141. B*B 1 in X if and only if

(8.66) B k Bk = 1 in 3,

the series converging strongly.

Corollary 8.15. B B* 1 in i if and only if

(8.67) Bk B - IJk for all k,j G N

where 6jk = 1 if J - k and 6jk= 0 if J 0 k.

Proof of Corollaries 8.14 and 8.15. (8.66) is an immediate

consequence of (8.64) and B*B - 1. (8.67) follows from B B* - 1 and

(8.65) on taking g(j) - (dik ), j fixed.
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On applyirg Corollary 8.14 to the direct sum space (8.1) and the

operator T it is seen that (8.13) of Corollary 8.2 is equivalent to

(8.5) of Theorem 8.1. Similarly, Corollary 8.15 implies that the

relations of Corollary 8.3 are equivalent to (8.6) of Theorem 8.1.

Proof of Corollary 8.2. It was shown that (8.5) follows from

Theorem 7.3. Thus (8.13) is valid by Corollary 8.14.

Proof of Corollary 8.3. The spectral mapping

-( ,_ ,I',..o) for A is unitary for all v > 0 by Theorem

5.6. It follows from Corollary 8.15 that the analogue of Corollary 8.3

holds for T see (5.38). It will be shown that Corollary 8.3 follows

from these relations. For brevity only the relation T0 y * 
- 1 will be

proved. The remaining relations can be proved by the same method.

For the proof of T0 '0 - 1 define
06

(8.68) To -  :O K L(Q).

Then

(8.69) TO o -- O

and it will suffice to prove that 0 T* - 1. The following lemma will

be used.

Lemma 8.16. For all g 6 V(O%) one has

(8.70) (Y g)(p,y) - JA0(Ip) o(y, Jpj,X) g(p,A)dX - [1I'plo g(p,')](y).

Proof of Lemma 8.16. Let f E W' - F-1 D(R3). Then ? C V(R3)

and by Lemma 7.10 one has
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TOY gTf - g'f) -(g,'iof) -(g~f 0)

(8.71)

= (pX) JR lp~x f(p,y)cZ (y)pl (y)dpdX.

Now ip0(y,jpI,X) is defined for (y~p,)X) (= R x Q.o. Extend the definition

to all (y,p,X) E R x R 3 by

(8.72) 'Poy,jpIA,) - 0 for y E R, (pAX) C R3 Q-

and apply Fubini's theorem to the integral in (8.71). This gives

(8.73) TO fR p (y,jpj,X)g(p,X) dX f(p,y)c (y)p1 '(y)dpdy,

which implies (8.70) because V(R 3) is dense in Xand supp ipO~y,jpI,-)

C A0(jpj), by (8.72).

Proof of Corollaryv 8.3 (completed). The relation TY TO 1 is

equivalent to

(8.74) T f 0 TO~g (Yf, Tog) - (f,g)

for all f,g 6 L2(i~0). Moreover, since *is bounded it will suffice to

verify (8.74) for f and g in the dense set V(SI0). Now Le-m 8.16 implies

that for all f,g e V(II.) one has

(f,A*Tg) - 'Rof~, ) (y) (1IJl1g(p,.)I(y)dpdy

(8.75)

f - T J po f~pt.)I7plog8p,-dp
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But by (5.38), T1 plo IF* p0 - 1 for all IPI > 0 and hence the last

integral equals

(8.76) (f(P")-g(P"))A0(1PD) d p  (f'g)L(Q)

which proves (8.74). This completes the proof.

Proof of Theorem 8.1. It was shown that (8.5) follows from

Theorem 7.3. Relation (8.6) follows from Corollary 8.3, by Corollary

8.15.

Proof of Corollaries 8.4 and 8.5. Corollary 8.4 follows

immediately from the definitions (8.16) and Corollaries 8.2 and 8.3.

Corollary 8.5 follows from Corollary 8.4.

Proof of Corollary 8.6. This is just a restatement of Theorem

7.3, equation (7.12).

Proof of Corollary 8.7. Equation (8.27) for T* will be verified.

The proofs of the remaining equation are similar. It is clearly

sufficient to verify (8.27) for functions 9+ E L2(Q) with compact

supp g+ C M. If g+ is such a function and f E Xcom then

.f,'g) - (''fg 4) -

(8.77)

(R3 p+(x,y,p,A) f(x,y) c-2 (y)- (Y)dxdy g+(p,X)dpdX

- 3 f(x,y) f (xy, p,X)g(p,X)dpdXJ c
- (y)p-1 (y)dxdy.

J
i This relation implies (8.27) for K+ because (com is dense in X.

I '1 -, "l.; ' '- .l
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Proof of Theorem 8.8. The representation (8.30), (8.31) follows

from Corollaries 8.2 and 8.7. The converse follows from the unitarity

of T, Theorem 8.1.

Proof of Theorem 8.9. Only equation (8.35) will be proved. The

other equations can be proved by the same method. To prove (8.35) let

f E D(A), g E D(OI) and note that

(8.78) (ToA f,g) = (A f,Yi0g) - (A f,"og).

Now if h = -0g then h E X, by Corollary 8.3 and, by Lemma 8.16,

(8.79) h(py) -A 0 1p1 *o0(yIpI,X) g(p,X)dX, (p,y) E R3 .

A distribution-theoretic calculation of A h gives

(8.80) A h(p ,y) X0(Y, p ,X) X g(p,A)dX.

In particular, since X g(p,X) E L2 (Qo), one has A h E X by Corollary

8.3 and hence h E D(A). Combining this with (8.78) gives

('oA f,g) - (A f,h) - (f! h)

(8.81)

R3 (p,yX)tD(y,!pI X g(p,X)dXJ c-2 (y)p-1 (y)dpdy.

Writing k(p,X) X ) g(p,X) E D(Qo) and applying Lemma 8.16 again gives

.. . ..J- ' -. ......... m . .. .. '" n l~ i '' " -" ... ., , ' -" 1 " ... ...
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(ToA fg) = (f,'*k) = (f,T*k)

(8.82)

= (T 0f,k) Mf L?(p,X) k(p,X)dpdA

= JX f0 (p,A) g(p,X)dpdX.

This implies (8.35) because the functions g E D(Q0) are dense in L2(Q0 ).

Proof of Corollary 8.10. It is only necessary to verify relations

(8.37). By [8, p. 530] these relations are equivalent to

(8.83) P+(U) = n(P)P+ V Pk(1) = f(P)Pk

for 0 < k < N. and all p E R. These equations are immediate consequences

of Theorem 7.4. For example (7.17) and the definition of P+ implies that

(8.84) (f,P+H(1)g) = (f,n(P)P+g) = H( -x) f+(pX) +(p.,X)dpdX

for all f,g E X, which implies P+1(11) = l(P)P+. The other relations are

proved similarly.

Proof of Theorem 8.11. Equation (8.50) can be verified by

applying the definition (8.47) to hM and using the convergence statement

of Theorem 7.3. Relations (8.51) follow from (8.47) and Corollary 8.3

by direct calculation. Equation (8.52) can be verified by reversing the

steps in the calculation (8.45), (8.46). Relation (8.53) follows from

Theorem 8.9 and equation (8.47).

Proof of Corollary 8.12. This was indicated immediately after

the statement of the Corollary.



§9. Semi-Infinite and Finite Layers.

The purpose of this section is to present extensions of the

preceding analysis to the cases of semi-inifinite and finite layers of

stratified fluid. The methods and results are entirely analogous to

those developed above. Therefore the presentation emphasizes the

modifications required in these cases. Proofs are indicated briefly or

omitted.

Semi-Infinite Layers. With a suitable choice of coordinates the

region occupied by the fluid is described by the domain

(9.1) R, = {(x,y) I Y > 0}

The acoustic field is assumed to satisfy either the Dirichlet or the

Neumann boundary condition on the boundary of R+. Physically, these

conditions correspond to the cases where the boundary plane is free and

rigid, respectively. The functions p(y) and c(y) are assumed to be

Lebesgue measurable and satisfy

(9.2) 0 < m  P(y) < PM < ,0 < cm < c(y) < cM4 <

for all y > 0 and

(9.3) J p(y) - p()Idy < fo, Ic(y) - c(o)Idy < .

0 0

The acoustic propagator A defined by (1.2) determines selfadjoint

operators AO and A' in

(9.4) X+ = L2 (R;,c
2 (y)p-(y)dxdy)

137
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corresponding to the two boundary conditions. The domains of A0 and A1

are subsets of

(9.5) L2 ((AR 2 {u I V-(P - Vu) E L2(R3)}.

The operator AO corresponding to the Dirichlet condition is defined by

(9.6) D(A0 ) = L1 (A,R3) n (u I u(x,+) - 0 in L2(R
2 )}.

2 +

Sobolev's embedding theorem for L2(R+) [1] implies that the boundary

values u(x,0+) are defined in L2 (R
2).

The Neumann condition will be interpreted in the generalized

sense employed in [15]; i.e.,

(9.7) {V (p-Vu)v + P-1 Vu • Vv}dxdy = 0
JR 3

for all v E L2(Rj). Thus the operator A' corresponding to the Neumann

condition is defined by

(9.8) D(A) L(A,R) n {u (9.7) holds for all v E L(R)

The operators are defined by AJu = Au for all u E D(AJ) and one has

(9.9) Ai - AJ * > 0, j = 0, 1.

This is most easily proved by introducing the corresponding sesquilinear

forms, as in §1, and using Kato's representation theorem [8, p. 322].

The spectral analysis of AO and A' may be based on the

corresponding reduced propagators A ° and A' in

(9.10) 7C(R+) - L2 (R+,c-
2 (y)p- 1(y)dy), R+ , {y y > 0}.
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They are defined by

(9.11) D(A) - L (R+) n { (p- P')' G 3(R+) and 1P(0+) - 0},

(9.12) D(A') = L'(R+) n p I (p - P')' E 3C(R+) and (pi')(0+) - 0},

(9.13) Ai = Ap for E D(A ), j - 0,1,

and one has

(9.14) AJP = Aj* > 1c2  2, j = 0,1.

The results of §3 can be extended to these operators. Thus

(9.15) y - a Ab
c Pi e 11

(9.16) a(A1) n (-oo,c2(_)U2) C a (AJ),Ii~ 011'

and the eigenvalues in this interval are all simple. They will be

denoted by AJ(P), 1 < k < Nj ( P) <
k ' -

Eigenfunctions of Aj . These functions will be denoted by

1 < k < NJ(j). They are uniquely defined by the conditions

I,)E D(Aj),4( I P1)IR

(9.17) (Aj - 0j(1)) 1kP(yU) = 0 for y E R+, and

(9.18) 0(0+,P) - 0, (p1 P")(O+,y) - 0.

The asymptotic behavior of qJ,(y,v) for y 4: is given by

(9.19) -J(y,v)
~ J(p ) exp {-y q'(,XJ(1))}, y,

k kC) ki 11
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where

(9.20) q,(,X) (p2 - X C-2(o))1/2 > 0.

The function J(y,p) has precisely k - 1 zeros.

Generalized Eigenfunctions of AJ . For X > c2(_)U2 . AJ has a

single family of generalized eigenfunctions {4(.,1,X) A > c 2 (e)w 2 } .

They are determined up to normalization by the conditions

(9.21) (A. - X)lPJ(yv,X) = 0 for y E R+, and

(9.22) p0 (0+,LA) - 0, (p- I1 ' )( O+,J,A) = 0.

Their asymptotic behavior for y - o is given by

(9.23) IPJ(y,lI,X) cj(,)[e - i y q (  ) + ,) iyq(v,)] y -

I

where

(9.24) q(pX) = (A c- 2() V 12)1/2 > 0.

The normalizing factors cj(p,A) are calculated below.

Generalized Eigenfunctions of AJ . These are defined by

(9.25) J(x,y,p,X) - (21t) - e i p x 4j(y, pIA), (pA) E 0,

(9.26) 4(x,y,p) - (2w) - ' eip x  (y,lpI), p e i, k > 1

where

(9.27) - {(pX) I A > c2 ()lpl2}

] (9.28) k {p I 1I Ok}, k > 1
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and 0k - { I NJ(P) > k + i}, as before. The wave-theoretic interpreta-

tions of the eigenfunctions (9.25), (9.26) may be derived from the

asymptotic forms (9.19), (9.23) as in §1. With these definitions the

following analogue of Theorem 7.4 holds.

Theorem 9.1. The spectral families {J(u)} of Ai satisfy

(f,nj(ll)f) -]H(Ij-X) IfJ(pX) 12 dpdA

(9.29)

+ Nf-l H(P - X,(IPl)) IfJ(p)j 2dp

k-l

for all f E JC where NJ = sup NJ (11) and
P>0

(9.30) IJ(p,X) - L2 ( 2)-lim JJ(x,y,p,X) f~x,y)c-2 (y)p-(y)dxdy,M 0 Ix_ 2

(9.31) !j(p)= L 2(a )-lim M J(xyp) f(x,y)C- ( y ) d x d y .

0 JIXIM (y*xy

Relation to the Infinite Layer Problem. Theorem 9.1 can be

derived by the method employed for the infinite layer problem in the

preceding sections. However, it can also be deduced directly from

Theorem 7.4. To this end one extends p(y), c(y) to all y C R as even

functions:

(9.32) p(-y) - p(y), c(-y) - c(y), y > 0.

Then it follows from (9.2), (9.3) that the extended functions satisfy

(1.3), (1.4) with
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(9.33) P() -P&) c() -C()

The corresponding operator in KC will be denoted by A, as before.

Property (9.33) implies that

(9.34) q,(u~,X) - q(uA), q..(i,X)- (UX

where the latter are defined by (9.20), (9.24). Moreover, the special

solutions P(YiUzA) of §3 satisfy

1(-""'X q04(y"iA)

(9.35) {;-~,~-*(~A
and it is easy to verify that the eigenfunction j4'k(y~j) of A is even

(resp., odd) when k is odd (resp., even). It follows that the eigen-

functions of AJ can be calculated from those of A by the rule

4 i(y' u) - r/ 2k' A ( '') y ! 0, k - 1,2,-.-

(9.36)1

The factor r2 is to renormalize h from R to R+.

Concerning the generalized eigenfunctions, note that there is no

,(y,p,A) for A V1because c(--o) - c(-o) and (9.35) implies that

(9.37) J.(yi)-

It follows that the coefficients R+,- T. in (1.33), (1.34) satisfy

(9.38) k~uA (U~,A), T+(1AA) -T_(,X)
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and the generalized eigenfunctions of AJ can be calculated from those of

A by the rule

(9.39) 4 0(y, ,) = (y,i,A) _ 4i+(_y, ,), y .> 0,r

(9.39)

y, + , + Ji+(-y,l,,), y > 0.

The factors cJ(ii,X) and RJ(p,A) of (9.23) are given by

(9.40) c°(p,X) - c'(4,A) - (p(-)/47rq(l,X))1/2

(9.41) R- R+ - T+, R - R+ + T+.

Theorem 9.1 can be deduced from Theorem 7.4 by introducing the

operators

(9.42) J X(R) I C, j = 0,1,

defined by

u(x,y), (x,y) E R+,

(9.43) JO u(x,y) y
[ -U(X,-y), (x,-y) 6: R3

1+

and

u(x,y), (x,y) = R .,
(9.44) JI u(x.y)=

U(x,-y), (x,-y) e R.

J0 and J, are bounded linear operators and using the fact that A has

coefficients satisfying (9.32) one can show that the resolvents of Aj and

A are related by

It
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ii
(9.45) R(AJ,4) = 2 J R(A,) jj 0,1. I

From this and Stone's theorem (7.64) it follows that

(9.46) nJ(i) - - J4 n jj, J = O'i.

Theorem 9.1 follows directly from these relations and Theorem 7.4. I.

Finite Layers. In this case, with a suitable choice of

coordinates the region occupied by the fluid is described by the domain

(9.47) 3 R3 n {(x,y) I 0 < y < h}

where h > 0. The case of a fluid layer with a free surface at y - 0 and

a rigid bottom at y - h will be discussed.

The acoustic propagator A and boundary conditions determine a

selfadjoint operator Ah in 4

(9.48) R= L 2 (,c-
2 (y)p-l (y)dxdy). k

To define the domain of Ah let

(9.49) L '0 (R) - L'(R) f {u u(x,0+) - 0 in L2(R)}.

The Dirichlet condition at y = 0 will be enforced by requiring

D(Ah) C L"( %). The Neumann condition at y h will be interpreted in

the generalized sense that

(9.50) {V(p-1Vu)v + p-1Vu*Vv}dxdy - 0 for all v E L'(R 3).

Thus
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(9.51) Dh(Ah  L0'(%3) n L2 (ARh) {u I (9.50) holds}

and Ahu Au for all u E D(Ah). As before

(9.52) Ah  Ah* > 0.

The corresponding reduced propagator Ah in X(R h)

L2(Rhc -2 (y)p -1(y)dy) (Rh = {y I 0 < y < h}) is defined by

(9.53) D(Ah) h L'(Rh) n {i[ (p- ej, (R+),(0+),0,(p- ip)(h')"0},

and Ah - A-, for all *E D(Ah). One has

h h* 2.2
(9.54) Ah - *_ m

h
as before. In the present case A& is a regular Sturm-Liouville operator.

Hence

(9.55) a(A) P a0 KA)

and if h), 1 < k < , denotes the eigenvalues then Xh(P) * w when

k . Note that in this case 0k 2
. If h(y, denotes

h -i ipxh
the corresponding eigenfunctions and *h(x,y,p) - (2n-) e Vji (y, Ip')

then the spectral family {h(1)} for Ah satisfies

(9.56) (f1 h 1 ))- J H(Ui _ Xh(jpj)) IEh(P)I2 dp

where

(9.57) jh(p) - L2 (R
2 )-lim h h(x,Y,p) f(x,y)C

- 2 (y)P- (y)dxdy.

These results can be proved by the method developed in §§2-7.
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§10. Concluding Remarks.

The spectral analysis of the acoustic propagator A has been

developed to provide a foundation for the study of acoustic wave propa-

gation in stratified fluids. The result developed in this report can be

used to analyze transient sound fields in stratified fluids following

the method developed for the Pekeris model in [18]. It can also be

used to establish a limiting absorption theorem and corresponding theory

of steady-state sound fields in stratified fluids. A third application

is to the analysis of the scattering and trapping of acoustic waves by

the acoustic ducts produced by minima of c(y). These applications will

be presented in separate reports.

A number of extensions of the theory are possible. Thus, other

classes of density and sound speed profiles could be studied. Examples

include cases where p(y) and/or c(y) tend to zero or infinity at y

or at finite boundary points or interior points. The Weyl-Kodaira theory

is applicable to all such operators that lead to selfadjoint realizations

of A . Some of these cases will be of interest for applications.

Another extension of the theory that holds great interest for

applications is to the analysis of the scattering of sound by obstacles

immersed in stratified fluids. Mathematically, this problem leads to

the spectral analysis of the acoustic propagators for stratified fluids

in domains exterior to bounded sets. The analysis presented above is a

necessary preparation for such a study.
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Appendix. The Weyl-Kodaira Theory.

The general Sturm-Liouville operator may be written

(A.!) L 0(y) - w-'(y){-(p-' (y)O')' + q(y)$}.

The basic spectral theory of such operators was established by H. Weyl

[141 and K. Kodaira (10]. The purpose of this Appendix is to present a

version of the Weyl-Kodaira theory that is applicable to the operator

of this report.

It is true that expositions of the Weyl-Kodaira theory are

available in [2, 3, 11] and a number of other textbooks and monographs.

However, in these and most of the book and periodical literature,

hypotheses are made concerning the form of the operator, or the continuity

or differentiability of the coefficients, that limit the applicability

of the theory. Thus most authors assume that w(y) - 1 and many take

p(y) -1 as well. Moreover, it is usual to assume that the coefficients

are smooth functions or at least continuous. It is known that if the

coefficients are sufficiently regular then L can be reduced to the

Schrodinger form L = -0" + q(y) by changes of the independent and

dependent variables (11, p. 21. However, this technique is not

applicable to operators with singular coefficients. Here a version of

the Weyl-Kodaira theory is presented that is applicable to operators

(A.1) with locally integrable coefficients. The concepts needed for

this extension of the theory are available in the classic book of

Coddington and Levinson (2].

The operator (A.1) will be studied on an arbitrary interval

I ( {y -< a < y < b < +w}. The coefficients will be assumed to have
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the properties

(A.2) p(y), q(y), w(y) are defined and real valued for

almost all y E I,

(A.3) p(y) > 0 and w(y) > 0 for almost all y E 1,

(A.4) p(y), q(y), w(y) are in L1 tc(1),

where L °c (I) - (f(y) I f E L,(K) for every compact K*C I). It is

natural to study L in the Hilbert space 3C(I,w) with scalar product

(A.5) (uv) - J u(y) v(y) w(y)dy.

In the general theory of singular Sturm-Liouville operators two

operators in JC(I,w) are associated with L. The first is the maximal

operator L1 defined by

D(LI) C(I,w) r) AC(I) f (u Ip - l u ' E AC(I),Lu E (Iw)

(A.6)

( Liu - Lu for all u e D(L).

The second is the minimal operator L0 defined by

D(L0) - D(Li) n (u I (L.u,v) - (u,L~v) for all v E D(L)}.

(A.7)

L0 u - Lu for all u 6 D(L 0 ).

It can be shown that L0 is densely defined and closed and satisfies

(A.8) LO C L: - L1 .

~I I I Ii Ili ,... .. .
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It follows that every selfadjoint realization of L in J(I,w) must satisfy

(A.9) LO C L C L 1.

If LO = L =L then L is said to be essentially selfadjoint. The
0 1

classification of the selfadjoint realizations of L by means of boundary

conditions at a and b will not be reviewed here. For essentially

selfadjoint operators no boundary conditions are needed (Weyl's limit

point case). The operator A of §1 is essentially selfadjoint since its

maximal operator is selfadjoint (cf. (1.18), (1.19)).

The Weyl-Kodaira theory provides spectral representations of the

selfadjoint realizations of singular Sturm-Liouville operators. Each

representation is derived from a basis of solutions of Li - X and a

corresponding 2 x 2 positive matrix measure m(X) - (m k(X)) [3, p.

1337ff]. The representation spaces are the Lebesgue spaces L 2 (A,m)

associated with m, with norm defined by!2 s!.
(A.1O) IFI - F (X) Fk(X) m Wk(dA).

,m A jlk-i

The following version of the Weyl-Kodaira theory is adapted from

[3, pp. 1351-6].

Theorem (Weyl-Kodaira). Let L be a selfadjoint realization of L

in C(I,w) with spectral family {Tt(A)). Let A - (X,,X2) C R and let

pj(y,X) (j 1,2) be a pair of functions with the properties

(A.11) iP(y,X) C C(I x A), j - 1,2,

(A.12) The pair 1 (y,X) (j - 1,2) is a solution basis for

Lip - Xon I for each X EA.
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Then there exists a unique 2 x 2 positive matrix measure m =(mijk) on A

with the following properties.

(A.13) For all f E 3C(l,w) there exists the limit

f(A) -(f 1(X),f 2 (Xk)) - L (A,m)-lim f fy iyX,,yX)~~y
a;)a, b'_.b 'a'fy)(iy,)i(y)wyd.

(A.14) The mapping U : C(I,w) - L 2 A,m) defined by Uf - f is a

partial isometry with initial set IHt(A) JC(I,w) and final

set L 2 (A,m).

(A.15) The inverse isomorphism of L2(A,m) onto 1ILC(A) 7C(I,w)

is given by

(U*F) (y) - JC(I,w)-lim f1 2 4yXF dL
I j ~j(YX)k(X)mjk~d)

(A.16) For all Borel functions TMA on R with supp T1 C A,

one has

U D('1(L)) -L 2 (A,m) fl {^f I (X)f(X) E L2(A,m)}, and

(U T (L) f )(X) - T()f(L

Discussion of the Proof. The theorem is proved in [3] under the

hypotheses w(y) E1, p(y), q(y) 6 CmO(I) and p(y) > 0. To prove it under

hypotheses (A.2), (A.3), (A.4) one may first prove it for the special

case of the basis 4(yX) that satisfies (k-i) (X)- 6 k where a < c < b.

.4 The functions ~(y,A) are entire functions of X and the theorem can be

proved by the classical limit-point, limit-circle method of Weyl as
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presented in [2]. The general case can then be obtained by a change of

basis from 4j(y,X) to ij(y,X). In fact, this was the procedure used by

Kodaira in his original paper [10]. The first uniqueness results for m

are due to E. k. Coddington and V. A. Mardenko (see [31). The uniqueness

proof given in [3] can be extended to the case treated here.

As emphasized by Dunford and Schwartz, the utility of the Weyl-

Kodaira theorem is due to the possibility of using different bases j

for different portions of the spectrum of L. When a basis has been

chosen one need only calculate the measure m. A general procedure for

doing this, due to E. C. Titchmarsh [3, p. 1364] is known for cases in

which the ij(y,A) have analytic continuations to a neighborhood of A in

the complex plane. However, such continuations are not always

available. A procedure that is applicable when the ip(y,X) have a

ol
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